The nature of the C≡S triple bond: part 3.

December 6th, 2009

In the previous two posts, a strategy for tuning the nature of the CS bond in the molecule HO-S≡C-H was developed, based largely on the lone pair of electrons identified on the carbon atom. By replacing the HO group by one with greater σ-electron withdrawing propensity, the stereo-electronic effect between the O-S bond and the carbon lone pair was enhanced, and in the process, the SC bond was strengthened. It is time to do a control experiment in the other direction. Now, the HO-S group is replaced by a H2B-S group. The B-S bond, boron being very much less electronegative than oxygen, should be a very poor σ-acceptor. In addition, whereas oxygen was a π-electron donor (acting to strengthen the S=C region), boron is a π-acceptor, and will also act in the opposite direction. So now, this group should serve to weaken the S-C bond.

Read the rest of this entry »

The nature of the C≡S Triple bond: Part 2

December 5th, 2009

In my first post on this theme, an ELF (Electron localization function) analysis of the bonding in the molecule HO-S≡C-H (DOI: 10.1002/anie.200903969) was presented. This analysis identified a lone pair of electrons localized on the carbon (integrating in fact to almost exactly 2.0) in addition to electrons in the CC region. This picture seems to indicate that the triple bond splits into two well defined regions of electron density (synaptic basins). In a comment to this post, I also pointed out that an NBO analysis showed a large interaction energy between the carbon lone pair and the S-O σ* orbital, characteristic of anomeric effects (in eg sugars). This latter observation gives us a handle on possibly tweaking the effect. Thus if the S-O σ* orbital can be made a better electron acceptor, then its interaction with the lone pair could be enhanced.

Read the rest of this entry »

The nature of the C≡S triple bond

December 1st, 2009

Steve Bachrach has just blogged on a recent article (DOI: 10.1002/anie.200903969) claiming the isolation of a compound with a C≡S triple bond;

Read the rest of this entry »

Multi-centre bonding in the Grignard Reagent

December 1st, 2009

The Grignard reaction is encountered early on in most chemistry courses, and most labs include the preparation of this reagent, typically by the following reaction:

Read the rest of this entry »

The Fine-tuned principle in chemistry

November 29th, 2009

The  so-called  Fine tuned model of the universe asserts that any small change in several of the dimensionless fundamental physical constants would make the universe radically different (and hence one in which life as we know it could not exist). I suggest here that there may be molecules which epitomize the same principle in chemistry. Consider for example dimethyl formamide. The NMR spectra of this molecule reveal that at room temperature, the two methyl groups are inequivalent, indicating that the rate constant for rotation about the C-N bond has a very particular range of values at the temperatures at which most living organisms exist on our planet.

Read the rest of this entry »

Mechanistic Ménage à trois

November 18th, 2009

Curly arrow pushing is one of the essential tools of a mechanistic chemist. Many a published article will speculate about the arrow pushing in a mechanism, although it is becoming increasingly common for these speculations to be backed up by quantitative quantum mechanical and dynamical calculations. These have the potential of exposing the underlying choreography of the electronic dance (the order in which the steps take place). The basic grammar of describing that choreography tends to be the full-headed curly arrow for closed shell systems and its half-barbed equivalent for open shell systems. An effectively unstated and hence implicit rule for closed shell systems is that only one curly arrow is used per breaking or forming bond, i.e. electrons move around bonds in pairs. So consider the following reaction (inspired by a posting on  Steve Bachrach’s blog)

Read the rest of this entry »

The SN1 Reaction- revisited

November 11th, 2009

In an earlier post I wrote about the iconic SN1 solvolysis reaction, and presented a model for the transition state involving 13 water molecules. Here, I follow this up with an improved molecule containing 16 water molecules, and how the barrier for this model compares with experiment. This latter is nicely summarized in the following article: Solvolysis of t-butyl chloride in water-rich methanol + water mixtures, which (for pure water) cites the following activation parameters
Read the rest of this entry »

Hypervalency: a reality check

October 5th, 2009

We have seen in the series of posts on the topic of hypervalency how the first row main group elements such as Be, B, C and N can sustain apparent hypercoordination and arguably hypervalency. The latter is defined not so much by expanding the total valence shell of electrons surrounding the hypervalent atom beyond eight, but in having more than four well defined bonds to it, as quantified by  AIM and ELF analysis. The previous post made the suggestion of how a compound involving hypervalent boron could also sustain a genuine  bond to the rare gas helium. It is surely time to seek evidence that this type of bonding can be sustained in reality. Fortunately, a crystal structure of a reasonably analogous compound IS available (DOI: 10.1016/0022-328X(94)05089-T).

Read the rest of this entry »

Uncompressed Monovalent Helium

October 3rd, 2009

Quite a few threads have developed in this series of posts, and following each leads in rather different directions. In this previous post the comment was made that coordinating a carbon dication to the face of a cyclopentadienyl anion resulted in a monocation which had a remarkably high proton affinity. So it is a simple progression to ask whether these systems may in turn harbour a large affinity for binding not so much a H+ as the next homologue He2+?

Read the rest of this entry »

Pentavalent nitrogen and boron

October 3rd, 2009

The previous posts have seen how a molecule containing a hypervalent carbon atom can be designed by making a series of logical chemical connections. Another logical step is to investigate whether the adjacent atoms in the periodic table may exhibit similar effects (C2+ ≡ B+ ≡ N3+ ≡ Be ≡ O4+). So here are reported some results (B3LYP/6-311G(d,p) ) for boron, beryllium and nitrogen, for the general tetramethyl substituted system shown below

Read the rest of this entry »