Archive for January, 2013
Thursday, January 31st, 2013
It is always rewarding when one comes across a problem in chemistry that can be solved using a continuous stream of rules and logical inferences from them. The example below[1] is one I have been using as a tutor in organic chemistry for a few years now, and I share it here. It takes around 50 minutes to unravel with students.
(more…)
References
- K. Harano, M. Eto, K. Ono, K. Misaka, and T. Hisano, "Sequential pericyclic reactions of unsaturated xanthates. One-pot synthesis of hydrobenzo[c]thiophenes", Journal of the Chemical Society, Perkin Transactions 1, pp. 299, 1993. https://doi.org/10.1039/p19930000299
Tags:final product, pericyclic, tutor, Tutorial material
Posted in Uncategorised | 2 Comments »
Friday, January 25th, 2013
Although have dealt with the π-complex formed by protonation of PhNHOPh in several posts, there was one aspect that I had not really answered; what is the most appropriate description of its electronic nature? Here I do not so much provide an answer, as try to show how difficult getting an accurate answer might be.
(more…)
Tags:electronic energy, energy, multi-reference solution
Posted in Interesting chemistry | No Comments »
Sunday, January 20th, 2013
With metrics in science publishing controversial to say the least, I pondered whether to write about the impact/influence a science-based blog might have (never mind whether it constitutes any measure of esteem). These are all terms that feature large when an (academic) organisation undertakes a survey of its researchers’ effectiveness.‡ WordPress (the organisation that provides the software used for this blog) recently enhanced the stats it offers for its users, and one of these caught my eye.
(more…)
Tags:manager, opendata
Posted in General | 3 Comments »
Saturday, January 19th, 2013
The transient π-complex formed during the “[5,5]” sigmatropic rearrangement of protonated N,O-diphenyl hydroxylamine can be (formally) represented as below, namely the interaction of a six-π-electron aromatic ring (the phenoxide anion 2) with a four-π-electron phenyl dication-anion pair 1. Can one analyse this interaction in terms of aromaticity?
(more…)
Tags:chemical, Michael Dewar
Posted in Interesting chemistry | 1 Comment »
Friday, January 18th, 2013
Michael Dewar[1] famously implicated a so-called π-complex in the benzidine rearrangement, back in the days when quantum mechanical calculations could not yet provide a quantitatively accurate reality check. Because this π-complex actually remains a relatively unusual species to encounter in day-to-day chemistry, I thought I would try to show in a simple way how it forms.
(more…)
References
- M. Dewar, and H. McNicoll, "Mechanism of the benzidine rearrangement", Tetrahedron Letters, vol. 1, pp. 22-23, 1959. https://doi.org/10.1016/s0040-4039(01)82765-9
Tags:energy, high energy molecules, Michael Dewar, Reaction Mechanism
Posted in Interesting chemistry | 2 Comments »
Wednesday, January 16th, 2013
If you search e.g. Scifinder for N,O-diphenyl hydroxylamine (RN 24928-98-1) there is just one literature citation, to a 1962 patent. Nothing else; not even a calculation (an increasing proportion of the molecules reported in Chemical Abstracts have now only ever been subjected to calculation, not synthesis). A search of Reaxys also offers only one hit[1] reporting one unsuccessful attempt in 1963 to prepare this compound. Again, nothing else. Yet show this structure to most organic chemists, and I venture to suggest few would immediately predict this (unless they are experts on benzidine rearrangements).‡
(more…)
References
- J.R. Cox, and M.F. Dunn, "The chemistry of O,N-diarylhydroxlamines - I", Tetrahedron Letters, vol. 4, pp. 985-989, 1963. https://doi.org/10.1016/s0040-4039(01)90757-9
Tags:energy, Historical, metal, pericyclic, Reaction Mechanism
Posted in Interesting chemistry | 7 Comments »
Sunday, January 13th, 2013
We tend to think of simple hydrocarbons as relatively inert and un-interesting molecules. However, a recent article[1], which was in fact highlighted by Steve Bachrach on his blog , asks what “The Last Globally Stable Extended Alkane” might be. In other words, at what stage does a straight-chain hydrocarbon fold back upon itself, and no significant population of the linear form remain? The answer was suggested to be C17H36. I thought I might subject this conformation to an NCI (non-covalent-interaction) analysis.
(more…)
References
- N.O.B. Lüttschwager, T.N. Wassermann, R.A. Mata, and M.A. Suhm, "The Last Globally Stable Extended Alkane", Angewandte Chemie International Edition, vol. 52, pp. 463-466, 2012. https://doi.org/10.1002/anie.201202894
Tags:conformational analysis, Steve Bachrach, Tutorial material
Posted in Uncategorised | 5 Comments »
Friday, January 11th, 2013
Kinetic isotope effects have become something of a lost art when it comes to exploring reaction mechanisms. But in their heyday they were absolutely critical for establishing the mechanism of the benzidine rearrangement[1]. This classic mechanism proceeds via bisprotonation of diphenyl hydrazine, but what happens next was the crux. Does this species rearrange directly to the C-C coupled intermediate (a concerted [5,5] sigmatropic reaction) or does it instead form a π-complex, as famously first suggested by Michael Dewar[2] [via TS(NN] and only then in a second step [via TS(CC)] form the C-C bond? Here I explore the isotope effects measured and calculated for this exact system.
(more…)
References
- H.J. Shine, H. Zmuda, K.H. Park, H. Kwart, A.G. Horgan, and M. Brechbiel, "Benzidine rearrangements. 16. The use of heavy-atom kinetic isotope effects in solving the mechanism of the acid-catalyzed rearrangement of hydrazobenzene. The concerted pathway to benzidine and the nonconcerted pathway to diphenyline", Journal of the American Chemical Society, vol. 104, pp. 2501-2509, 1982. https://doi.org/10.1021/ja00373a028
- M. Dewar, and H. McNicoll, "Mechanism of the benzidine rearrangement", Tetrahedron Letters, vol. 1, pp. 22-23, 1959. https://doi.org/10.1016/s0040-4039(01)82765-9
Tags:Henry Shine, Michael Dewar, Reaction Mechanism, TS(CC), Yamabe and co
Posted in Interesting chemistry | 1 Comment »