Posts Tagged ‘Transition metal’

(another) WATOC 2017 report.

Tuesday, August 29th, 2017

Another selection (based on my interests, I have to repeat) from WATOC 2017 in Munich.

  1. Odile Eisenstein gave a talk about predicted 13C chemical shifts in transition metal (and often transient) complexes, with the focus on metallacyclobutanes. These calculations include full spin-orbit/relativistic corrections, essential when the carbon is attached to an even slightly relativistic element. She noted that the 13C shifts of the carbons attached to the metal fall into two camps, those with δ ~+80 ppm and those with values around -8 ppm. These clusters are associated with quite different reactivities, and also seem to cluster according to the planarity or non-planarity of the 4-membered ring. There followed some very nice orbital explanations which I cannot reproduce here because my note taking was incomplete, including discussion of the anisotropy of the solid state spectra. A fascinating story, which I add to here in a minor aspect. Here is a plot of the geometries of the 52 metallacyclobutanes found in the Cambridge structure database. The 4-ring can be twisted by up to 60° around either of the C-C bonds in the ring, and rather less about the M-C bonds. There is a clear cluster (red spot) for entirely flat rings, and perhaps another at around 20° for bent ones, but of interest is that it does form something of a continuum. What is needed is to correlate these geometries with the observed 13C chemical shifts to see if the two sets of clusters match. I include this here because in part such a search can be done in “real-time” whilst the speaker is presenting, and can then be offered as part of the discussion afterwards. It did not happen here because I was chairing the meeting, and hence concentrating entirely on proceedings!

    (more…)

Quintuple bonds: resurfaced.

Sunday, January 31st, 2016

Six years ago, I posted on the nature of a then recently reported[cite]10.1002/anie.200803859[/cite] Cr-Cr quintuple bond. The topic resurfaced as part of the discussion on a more recent post on NSF3, and a sub-topic on the nature of the higher order bonding in C2. The comment made a connection between that discussion and the Cr-Cr bond alluded to above. I responded briefly to that comment, but because I want to include 3D rotatable surfaces, I expand the discussion here and not in the comment.

(more…)