Organic chemistry has some no-go areas, where few molecules dare venture. One of them is described by a concept known as anti-aromaticity. Whereas aromatic molecules are favoured species, their anti-equivalent is avoided. I previously illustrated this (Hückel rule) with cyclopropenium anion. Now I take a look at cyclobutadiene, for which the π-system is said to be iso-electronic (where two electrons in a double bond have replaced the carbanion lone pair).
Posts Tagged ‘Tutorial material’
Some fun with no-go areas of chemistry: cyclobutadiene.
Sunday, September 18th, 2011Anatomy of a simple reaction: the hydration of an alkene.
Sunday, September 4th, 2011The hydration of an alkene by an acid is one of those fundamental reactions, taught early on in most chemistry courses. What can quantum mechanics teach us about the mechanism of the reaction?
A stable borylene. An exercise in lateral thinking.
Sunday, August 7th, 2011I have often heard the question posed “how much of chemistry has been discovered?” Another might be “has most of chemistry, like low-hanging fruit, already been picked?“. Well, time and time again, one comes across examples which are only a simple diagram or so away from what might be found in any introductory chemistry text, and which would tend to indicate the answers to these questions is a resounding no. Take for example the three reactions shown below.
Molecular illusions and deceptions. Ascending and Descending Penrose stairs.
Wednesday, June 15th, 2011It is not often that an article on the topic of illusion and deception makes it into a chemical journal. Such is addressed (DOI: 10.1002/anie.201102210) in no less an eminent journal than Angew Chemie. The illusion (or deception if you will) actually goes to the heart of how we represent three-dimensional molecules in two dimensions, and the meanings that may be subverted by doing so. A it happens, it is also a recurring theme of this particular blog, which is the need to present chemistry with data for all three dimensions fully intact (hence the Click for 3D captions which often appear profusely here).
Buses (and dyotropic rearrangements) always come in threes.
Sunday, June 12th, 2011The last two posts have played a game of find the electrons. We saw how the dyotropic rearrangement of ethane borrowed electrons from the C-C bond, and how 1,2,dibromoethane went ionic on us. How about this mixed system, in which a hydrogen and a BH2 swap their positions?
More is more: the dyotropic rearrangement of 1,2-dibromoethane.
Sunday, June 12th, 2011In the previous post, I discussed what we could learn from ethane by forcing it into a pericyclic dyotropic rearrangement. We saw how it voraciously scavenged two electrons from the C-C bond to achieve this. What if we give it more electrons? Thus 1,2-dibromoethane undergoing the same reaction.
Less is more: the dyotropic rearrangement of ethane
Saturday, June 11th, 2011In a time when large (molecules) are considered beautiful (or the corollary that beauty must be big), it is good to reflect that small molecules may teach us something as well. Take ethane. Is there anything left which has not been said about it already? Well, consider the reaction below, in which two hydrogen atoms mutually hop from one carbon to the other.
Déjà vu: Pirkle for a third time!
Wednesday, May 25th, 2011This molecule is not leaving me in peace. It and I first met in 1990 (DO: 10.1039/C39910000765), when we spotted the two unusual π-facial bonds formed when it forms a loose dimer. The next step was to use QTAIM to formalise this interaction, and this led to spotting a second one missed the first time round (labelled 2 in that post). Then a method known as NCI was tried, which revealed an H…H interaction, labelled ? in that post! Here I discuss the origins of the ?
The inner secrets of the DNA structure.
Wednesday, May 18th, 2011In earlier posts, I alluded to what might make DNA wind into a left or a right-handed helix. Here I switch the magnification of our structural microscope up a notch to take a look at some more inner secrets.