Archive for the ‘Interesting chemistry’ Category

Lapis lazuli: the colour of ultramarine.

Saturday, March 5th, 2011

My colleague Bill Griffith has again come up with another colour challenge: that of the ancient semi-precious stone Lapis Lazuli, mined in the mountains of Afghanistan for more than 6000 years and used by painters in some medieval paintings of the Virgin, the Wilton diptych etc.

(more…)

The colour of purple

Thursday, February 24th, 2011

One of my chemical heroes is William Perkin, who in 1856 famously (and accidentally) made the dye mauveine as an 18 year old whilst a student of August von Hofmann, the founder of the Royal College of Chemistry (at what is now  Imperial College London). Perkin went on to found the British synthetic dyestuffs and perfumeries industries. The photo below shows Charles Rees, who was for many years the Hofmann professor of organic chemistry at the very same institute as Perkin and Hofmann himself, wearing his mauveine tie. A colleague, who is about to give a talk on mauveine, asked if I knew why it was, well so very mauve. It is a tad bright for today’s tastes!

(more…)

Shorter is higher: the strange case of diberyllium.

Friday, January 21st, 2011

Much of chemistry is about bonds, but sometimes it can also be about anti-bonds. It is also true that the simplest of molecules can have quite subtle properties. Thus most undergraduate courses in chemistry deal with how to describe the bonding in the diatomics of the first row of the periodic table. Often, only the series C2 to F2 is covered, so as to take into account the paramagnetism of dioxygen, and the triple bonded nature of dinitrogen (but never mentioning the strongest bond in the universe!). Rarely is diberyllium mentioned,  and yet by its strangeness, it can also teach us a lot of chemistry.

(more…)

Do electrons prefer to move in packs of 4, 6 or 8 during proton exchange in a calixarene?

Friday, January 7th, 2011

This story starts with a calixarene, a molecule (suitably adorned with substituents) frequently used as a host to entrap a guest and perchance make the guest do something interesting. Such a calixarene was at the heart of a recent story where an attempt was made to induce it to capture cyclobutadiene in its cavity.

(more…)

A comparison of left and right handed DNA double-helix models.

Saturday, January 1st, 2011

When Watson and Crick (WC) constructed their famous 3D model for DNA, they had to decide whether to make the double helix left or right handed. They chose a right-handed turn, on the grounds that their attempts at left-handed models all “violated permissible van der Waals contacts“. No details of what these might have been were given in their original full article (or the particular base-pairs which led to the observation). This follow-up to my earlier post explores this aspect, using a computer model.

(more…)

The handedness of DNA: an unheralded connection.

Wednesday, December 29th, 2010

Science is about making connections. Plenty are on show in Watson and Crick’s famous 1953 article on the structure of DNA[1] but often with the tersest of explanations. Take for example their statement “Both chains follow right-handed helices“. Where did that come from? This post will explore the subtle implications of that remark (and how in one aspect they did not quite get it right!).

(more…)

References

  1. J.D. WATSON, and F.H.C. CRICK, "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid", Nature, vol. 171, pp. 737-738, 1953. https://doi.org/10.1038/171737a0

Do marauding electrons go in packs?

Monday, December 27th, 2010

Is there a preferred pack size for electrons on the move? Or put less flamboyantly, is there an optimum, and a maximum number of arrows (electron pairs) that one might push in revealing the mechanism of a concerted reaction? A sort of village-instinct for electrons. Consider the following (known, DOI: 10.1016/S0040-4039(00)98289-3) reaction

(more…)

(re)Use of data from chemical journals.

Wednesday, December 22nd, 2010

If you visit this blog you will see a scientific discourse in action. One of the commentators there notes how they would like to access some data made available in a journal article via the (still quite rare) format of an interactive table, but they are not familiar with how to handle that kind of data (file). The topic in question deals with various kinds of (chemical) data, including crystallographic information, computational modelling, and spectroscopic parameters. It could potentially deal with much more. It is indeed difficult for any one chemist to be familiar with how data is handled in such diverse areas. So I thought I would put up a short tutorial/illustration in this post of how one might go about extracting and re-using data from this one particular source.

(more…)

Following one’s nose: a quadruple bond to carbon. Surely I must be joking!

Thursday, December 16th, 2010

Do you fancy a story going from simplicity to complexity, if not absurdity, in three easy steps? Read on! The following problem appears in one of our (past) examination questions in introductory organic chemistry. From relatively mundane beginnings, one can rapidly find oneself in very unexpected territory.

(more…)

Janus mechanisms (the past and the future): Reactions of the diazonium cation.

Saturday, December 11th, 2010

Janus was the mythological Roman god depicted as having two heads facing opposite directions, looking simultaneously into the past and the future. Some of the most ancient (i.e. 19th century) known reactions can be considered part of a chemical mythology; perhaps it is time for a Janus-like look into their future.

(more…)