Little did I imagine, when I discovered the original example of using curly arrows to express mechanism, that the molecule described there might be rather too anarchic to use in my introductory tutorials on organic chemistry. Why? It simply breaks the (it has to be said to some extent informal) rules! Consider the dimerisation of nitrosomethane (in fact a well-known equilibrium).
Archive for July 20th, 2012
The first curly arrows…lead to this?
Friday, July 20th, 2012Origins of the Regioselectivity of Cyclopropylcarbinyl Ring Opening Reactions.
Friday, July 20th, 2012Twenty years are acknowledged to be a long time in Internet/Web terms. In the early days (in 1994), it was a taken that the passage of 1 Web day in the Internet time-warp was ~≡ 7 for the rest of the world (the same factor as applied to the lives of canines). This temporal warping can also be said to apply to computational chemistry. I previously revisited some computational work done in 1992, and here I rediscover another investigation from that year[1] and that era. The aim in this post is to compare not only how the presentation of the results has changed, but how the computational models have as well.
References
- R.A. Batey, P. Grice, J.D. Harling, W.B. Motherwell, and H.S. Rzepa, "Origins of the regioselectivity of cyclopropylcarbinyl ring opening reactions in bicyclo [n.1.0] systems", Journal of the Chemical Society, Chemical Communications, pp. 942, 1992. https://doi.org/10.1039/c39920000942
The first ever curly arrows.
Friday, July 20th, 2012I was first taught curly arrow pushing in 1968, and have myself taught it to many a generation of student since. But the other day, I learnt something new. Nick Greeves was kind enough to send me this link‡to the origin of curly arrow pushing in organic chemistry, where the following diagram is shown and Alan Dronsfield sent me two articles he co-wrote on the topic (T. M. Brown, A. T. Dronsfield and P. J. T Morris, Education in Chemistry, 2001, 38, 102-104, 107 and 2003, 40, 129-134);† thanks to both of them.