A little while ago, I speculated (blogs are good for that sort of thing) about hexavalent carbon, and noted how one often needs to make (retrospectively) obvious connections between two different areas of chemistry. That post has attracted a number of comments in the two years its been up, along the lines: what about carboranes? So here I have decided to explore that portal into boron chemistry. The starting point is the reported crystal structure of a molecule containing a CH12B11– anion (DOI: 10.1021/ja00201a073). This differs from the molecule I previously reported in having not so much 5C-C + 1C-H bonds around a single carbon, but instead 5B-C + 1C-H bonds. The basic cluster is much in fashion (as B12Cl122-) for its properties as a non-coordinating counterion.
Archive for June, 2011
Hexavalent carbon revisited (and undecavalent boron thrown in).
Sunday, June 26th, 2011Molecular illusions and deceptions. Ascending and Descending Penrose stairs.
Wednesday, June 15th, 2011It is not often that an article on the topic of illusion and deception makes it into a chemical journal. Such is addressed (DOI: 10.1002/anie.201102210) in no less an eminent journal than Angew Chemie. The illusion (or deception if you will) actually goes to the heart of how we represent three-dimensional molecules in two dimensions, and the meanings that may be subverted by doing so. A it happens, it is also a recurring theme of this particular blog, which is the need to present chemistry with data for all three dimensions fully intact (hence the Click for 3D captions which often appear profusely here).
Buses (and dyotropic rearrangements) always come in threes.
Sunday, June 12th, 2011The last two posts have played a game of find the electrons. We saw how the dyotropic rearrangement of ethane borrowed electrons from the C-C bond, and how 1,2,dibromoethane went ionic on us. How about this mixed system, in which a hydrogen and a BH2 swap their positions?
More is more: the dyotropic rearrangement of 1,2-dibromoethane.
Sunday, June 12th, 2011In the previous post, I discussed what we could learn from ethane by forcing it into a pericyclic dyotropic rearrangement. We saw how it voraciously scavenged two electrons from the C-C bond to achieve this. What if we give it more electrons? Thus 1,2-dibromoethane undergoing the same reaction.
Less is more: the dyotropic rearrangement of ethane
Saturday, June 11th, 2011In a time when large (molecules) are considered beautiful (or the corollary that beauty must be big), it is good to reflect that small molecules may teach us something as well. Take ethane. Is there anything left which has not been said about it already? Well, consider the reaction below, in which two hydrogen atoms mutually hop from one carbon to the other.
Hafnium and Niels Bohr
Sunday, June 5th, 2011In 1923, Coster and von Hevesy[1] claimed discovery of the element Hafnium, atomic number 72 (latin Hafnia, meaning Copenhagen, where the authors worked) on the basis of six lines in its X-ray spectrum. The debate had long raged as to whether (undiscovered) element 72 belonged to the rare-earth group 3 of the periodic table below yttrium, or whether it should be placed in group 4 below zirconium. Establishing its chemical properties finally placed it in group 4. Why is this apparently arcane and obscure re-assignment historically significant? Because, in June 1922, in Göttingen, Niels Bohr had given a famous series of lectures now known as the Bohr Festspiele on the topic of his electron shell theory of the atom. Prior to giving these lectures he had submitted his collected thoughts in January 1922[2].
References
- D. COSTER, and G. HEVESY, "On the Missing Element of Atomic Number 72", Nature, vol. 111, pp. 79-79, 1923. https://doi.org/10.1038/111079a0
- N. Bohr, "Der Bau der Atome und die physikalischen und chemischen Eigenschaften der Elemente", Zeitschrift f�r Physik, vol. 9, pp. 1-67, 1922. https://doi.org/10.1007/bf01326955