Archive for the ‘Interesting chemistry’ Category

What is the range of values for a (sp3)C-C(sp3) single bond length?

Wednesday, September 12th, 2012

Here is a challenge: what is the longest C-C bond actually determined (in which both carbon termini are sp3 hybridised)? I pose this question since Steve Bachrach has posted on how to stabilize long bonds by attractive dispersive interactions, and more recently commenting on what the longest straight chain alkane might be before dispersive interaction start to fold it (the answer appears to be C17).

(more…)

The Sn2 reaction and the anomaly of carbon.

Thursday, September 6th, 2012

It was three years ago that I first blogged on the topic of the Sn2 reaction. Matthias Bickelhaupt had suggested that the Sn2 reaction involving displacement at a carbon atom was an anomaly; the true behaviour was in fact exhibited by the next element down in the series, silicon. The pentacoordinate species shown below (X=Si) is naturally a minimum, and the fact that for carbon (X=C) one gets instead a transition state resulting in a significant thermal barrier (~ 20 kcal/mol) was a manifestation of abnormal behaviour.

(more…)

The first curly arrows. The dénouement.

Monday, July 23rd, 2012

Recollect, Robinson was trying to explain why the nitroso group appears to be an o/p director of aromatic electrophilic substitution. Using σ/π orthogonality, I suggested that the (first ever) curly arrows as he drew them could not be the complete story, and that a transition state analysis would be needed. Here it is. 

(more…)

Dynamic effects in nucleophilic substitution at trigonal carbon.

Monday, July 16th, 2012

Singleton and co-workers have produced some wonderful work showing how dynamic effects and not just transition states can control the outcome of reactions. Steve Bachrach’s blog contains many examples, including this recent one.

(more…)

More joining up of pieces. Stereocontrol in the ring opening of cyclopropenes.

Thursday, July 12th, 2012

Years ago, I was travelling from Cambridge to London on a train. I found myself sitting next to a chemist, and (as chemists do), he scribbled the following on a piece of paper. When I got to work the next day Vera (my student) was unleashed on the problem, and our thoughts were published[1]. That was then.

(more…)

References

  1. M.S. Baird, J.R. Al Dulayymi, H.S. Rzepa, and V. Thoss, "An unusual example of stereoelectronic control in the ring opening of 3,3-disubstituted 1,2-dichlorocyclopropenes", Journal of the Chemical Society, Chemical Communications, pp. 1323, 1992. https://doi.org/10.1039/c39920001323

Connections in chemistry. Anti-malaria drug ↔ organocatalysis.

Thursday, July 5th, 2012

Back in 1994, we published the crystal structure of the molecule below (X=H), a putative anti-malarial drug called halofantrine. Little did we realise that a whole area of organo catalysis based on a thiourea catalyst with a similar motif would emerge a little later. Here is how the two are connected.

(more…)

Streptomycin: a case study in the progress of science.

Monday, May 28th, 2012

Streptomycin is an antibiotic active against tuberculosis, and its discovery has become something of a cause célèbre. It was first isolated on October 19, 1943 by a graduate student Albert Schatz in the laboratory of Selman Waksman at Rutgers University. I want to concentrate in this post on its molecular structure. Its initial isolation was followed by an extraordinarily concentrated period of about three years devoted to identifying that structure, culminating in a review of this chemistry in 1948 by Lemieux and Wolfram.[1] This review presents the structure as shown below (left). The modern rendering on the right is based on a crystal structure done in 1978.[2]

(more…)

References

  1. R. Lemieux, and M. Wolfrom, "The Chemistry of Streptomycin", Advances in Carbohydrate Chemistry, pp. 337-384, 1948. https://doi.org/10.1016/s0096-5332(08)60034-x
  2. "The crystal and molecular structure of streptomycin oxime selenate tetrahydrate", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 359, pp. 365-388, 1978. https://doi.org/10.1098/rspa.1978.0047

Surprises (?) in the addition of HCl to a carbonyl group.

Thursday, May 24th, 2012

HCl reacting with a carbonyl compound (say formaldehyde) sounds pretty simple. But often the simpler a thing looks, the more subtle it is under the skin. And this little reaction is actually my prelude to the next post.

(more…)

Reductive ozonolysis: the interesting step.

Monday, May 7th, 2012

The mechanism of the reaction of alkenes known as ozonolysis was first set out in its modern form by Criegee. The crucial steps, (a), (b) and (d), are all pericyclic cycloaddition/eliminations. The last step (e) is known as reductive ozonolysis, and this step is often treated as an afterthought, part of the work-up of the reaction if you like (it is not illustrated in Criegee’s review for example). Here, I will attempt to show that it is actually a very interesting mechanistic step.

(more…)

The Dieneone-phenol controversies.

Monday, April 30th, 2012

During the 1960s, a holy grail of synthetic chemists was to devise an efficient route to steroids. R. B. Woodward was one the chemists who undertook this challenge, starting from compounds known as dienones (e.g. 1) and their mysterious conversion to phenols (e.g. 2 or 3) under acidic conditions. This was also the golden era of mechanistic exploration, which coupled with an abundance of radioactive isotopes from the war effort had ignited the great dienone-phenol debates of that time (now largely forgotten). In a classic recording from the late 1970s, Woodward muses how chemistry had changed since he started in the early 1940s. In particular he notes how crystallography had revolutionised the reliability and speed of molecular structure determination. Here I speculate what he might have made of modern computational chemistry, and in particular whether it might cast new light on those mechanistic controversies of the past.

(more…)