Kucernak Group: Publications

Publication List

Papers

1. Turek, V.A., et al., Plasmonic Ruler at the Liquid-Liquid Interface. Acs Nano, 2012. 6(9): p. 7789-7799.

2. Thepkaew, J., et al., Electrocatalytic activity of mesoporous binary/ternary PtSn-based catalysts for ethanol oxidation. Journal of Electroanalytical Chemistry, 2012. 685: p. 41-46.

3. Kucernak, A., F. Bidault, and G. Smith, Membrane electrode assemblies based on porous silver electrodes for alkaline anion exchange membrane fuel cells. Electrochimica Acta, 2012. 82: p. 284-290.

4. Jiang, J. and A. Kucernak, Mass transport and kinetics of electrochemical oxygen reduction at nanostructured platinum electrode and solid polymer electrolyte membrane interface. Journal of Solid State Electrochemistry, 2012. 16(8): p. 2571-2579.

5. Ahmad, E.A., et al., Comment on "2D Atomic Mapping of Oxidation States in Transition Metal Oxides by Scanning Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy". Physical Review Letters, 2012. 108(25).

6. Ahmad, E.A., et al., Comment on "2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy". Physical review letters, 2012. 108(25): p. 259702-259701; discussion 259702.

7. Sleightholme, A.E.S. and A. Kucernak, An anomalous peak observed in the electrochemistry of the platinum/perfluorosulfonic acid membrane interface. Electrochimica Acta, 2011. 56(11): p. 4396-4402.

8. Elias, S., et al., Electrocatalytic CO2 reduction using modified electrodes. Abstracts of Papers of the American Chemical Society, 2011. 242.

9. Cousens, N.E.A. and A.R. Kucernak, Increasing the potential window of the interface between two immiscible electrolyte solutions to more than 1.2 V. Electrochemistry Communications, 2011. 13(12): p. 1539-1541.

10. Bidault, F. and A. Kucernak, Cathode development for alkaline fuel cells based on a porous silver membrane. Journal of Power Sources, 2011. 196(11): p. 4950-4956.

11. Ahmad, E.A., et al., Thermodynamic stability of LaMnO3 and its competing oxides: A hybrid density functional study of an alkaline fuel cell catalyst. Physical Review B, 2011. 84(8).

12. Marinescu, M., et al., Electrowetting Dynamics Facilitated by Pulsing. Journal of Physical Chemistry C, 2010. 114(51): p. 22558-22565.

13. Kornyshev, A.A., et al., Ultra-Low-Voltage Electrowetting. Journal of Physical Chemistry C, 2010. 114(35): p. 14885-14890.

14. Brett, D.J.L., et al., What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance. Chemphyschem, 2010. 11(13): p. 2714-2731.

15. Bidault, F. and A. Kucernak, A novel cathode for alkaline fuel cells based on a porous silver membrane. Journal of Power Sources, 2010. 195(9): p. 2549-2556.

16. Kim, J.-D., et al., Small-Angle X-Ray Scattering and Proton Conductivity of Anhydrous Nafion-Benzimidazole Blend Membranes. Journal of the Electrochemical Society, 2009. 156(6): p. B729-B734.

17. Jiang, J. and A. Kucernak, Synthesis of highly active nanostructured PtRu electrocatalyst with three-dimensional mesoporous silica template. Electrochemistry Communications, 2009. 11(3): p. 623-626.

18. Jiang, J. and A. Kucernak, Electrodeposition of highly alloyed quaternary PtPdRuOs catalyst with highly ordered nanostructure. Electrochemistry Communications, 2009. 11(5): p. 1005-1008.

19. Jiang, J. and A. Kucernak, Electrocatalytic properties of nanoporous PtRu alloy towards the electrooxidation of formic acid. Journal of Electroanalytical Chemistry, 2009. 630(1-2): p. 10-18.

20. Jiang, J. and A. Kucernak, Probing anodic reaction kinetics and interfacial mass transport of a direct formic acid fuel cell using a nanostructured palladium-gold alloy microelectrode. Electrochimica Acta, 2009. 54(19): p. 4545-4551.

21. Brown, R.J.C., D.J.L. Brett, and A.R.J. Kucernak, An electrochemical quartz crystal microbalance study of platinum phthalocyanine thin films. Journal of Electroanalytical Chemistry, 2009. 633(2): p. 339-346.

22. Wieckowski, et al., Mesoscopic mass transport effects in electrocatalytic processes Discussion. Faraday Discussions, 2008. 140: p. 185-207.

23. Sleightholme, A.E.S., J.R. Varcoe, and A.R. Kucernak, Oxygen reduction at the silver/hydroxide-exchange membrane interface. Electrochemistry Communications, 2008. 10(1): p. 151-155.

24. Professor, G., et al., Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes Discussion. Faraday Discussions, 2008. 140: p. 417-437.

25. Offer, G.J. and A.R. Kucernak, Calculating the coverage of saturated and sub-saturated layers of carbon monoxide adsorbed onto platinum. Journal of Electroanalytical Chemistry, 2008. 613(2): p. 171-185.

26. Kucernak, A.R. and E. Toyoda, Studying the oxygen reduction and hydrogen oxidation reactions under realistic fuel cell conditions. Electrochemistry Communications, 2008. 10(11): p. 1728-1731.

27. Kucernak, A.R. and G.J. Offer, The role of adsorbed hydroxyl species in the electrocatalytic carbon monoxide oxidation reaction on platinum. Physical Chemistry Chemical Physics, 2008. 10(25): p. 3699-3711.

28. Vasileiadis, N., et al., Numerical modeling of a single channel polymer electrolyte fuel cell. Journal of Fuel Cell Science and Technology, 2007. 4(3): p. 336-344.

29. Eikerling, M., A. Kornyshev, and A. Kucernak, Driving the hydrogen economy. Physics World, 2007. 20(7): p. 32-36.

30. Brett, D.J.L., et al., Membrane resistance and current distribution measurements under various operating conditions in a polymer electrolyte fuel cell. Journal of Power Sources, 2007. 172(1): p. 2-13.

31. Brett, D.J.L., et al., Measurement and modelling of carbon monoxide poisoning distribution within a polymer electrolyte fuel cell. International Journal of Hydrogen Energy, 2007. 32(7): p. 863-871.

32. Kucernak, A.R., FUEL 145-Polymer electrolyte fuel cell conductivity distribution measured and its effect on local current distribution. Abstracts of Papers of the American Chemical Society, 2006. 232.

33. Eikerling, M., A.A. Kornyshev, and A.R. Kucernak, Water in polymer electrolyte fuel cells: Friend or foe? Physics Today, 2006. 59(10): p. 38-44.

34. Jiang, J.H. and A. Kucernak, Solid polymer electrolyte membrane composite microelectrode investigations of fuel cell reactions. II: voltammetric study of methanol oxidation at the nanostructured platinum microelectrode vertical bar Nafion((R)) membrane interface. Journal of Electroanalytical Chemistry, 2005. 576(2): p. 223-236.

35. Brown, R.J.C., A.R. Kucernak, and A.G. Taylor, Optical second harmonic generation at platinum phthalocyanine-modified platinum electrodes. Thin Solid Films, 2005. 476(2): p. 373-378.

36. Brown, R.J.C. and A.R. Kucernak, The photoelectrochemistry of platinum phthalocyanine films in aqueous media. Journal of Solid State Electrochemistry, 2005. 9(6): p. 459-468.

37. Brett, D.J.L., et al., Localised electrochemical impedance measurements on a single channel of a solid polymer fuel cell. Proton Conducting Membrane Fuel Cells III, Proceedings, ed. M. Murthy, et al. Vol. 2002. 2005. 336-348.

38. Jiang, J.H. and A. Kucernak, Mesoporous microspheres composed of PtRu alloy. Chemistry of Materials, 2004. 16(7): p. 1362-1367.

39. Jiang, J.H. and A. Kucernak, Investigations of fuel cell reactions at the composite microelectrode vertical bar solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt vertical bar Nafion((R)) membrane interface. Journal of Electroanalytical Chemistry, 2004. 567(1): p. 123-137.

40. Chen, S.L. and A. Kucernak, Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon. Journal of Physical Chemistry B, 2004. 108(10): p. 3262-3276.

41. Chen, S.L. and A. Kucernak, Electrocatalysis under conditions of high mass transport: Investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. Journal of Physical Chemistry B, 2004. 108(37): p. 13984-13994.

42. Brown, R.J.C., et al., Spectroscopic and electrochemical studies on platinum and palladium phthalocyanines. New Journal of Chemistry, 2004. 28(6): p. 676-680.

43. Brett, D.J.L., et al., Investigation of reactant transport within a polymer electrolyte fuel cell using localised CO stripping voltammetry and adsorption transients. Journal of Power Sources, 2004. 133(2): p. 205-213.

44. Kucernak, A. and J.H. Jiang, Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation. Chemical Engineering Journal, 2003. 93(1): p. 81-90.

45. Jiang, J.H. and A. Kucernak, Electrooxidation of small organic molecules on mesoporous precious metal catalysts II: CO and methanol on platinum-ruthenium alloy. Journal of Electroanalytical Chemistry, 2003. 543(2): p. 187-199.

46. Chen, S.L. and A. Kucernak, Electrodeposition of platinum on nanometer-sized carbon electrodes. Journal of Physical Chemistry B, 2003. 107(33): p. 8392-8402.

47. Brett, D.J.L., et al., Localized impedance measurements along a single channel of a solid polymer fuel cell. Electrochemical and Solid State Letters, 2003. 6(4): p. A63-A66.

48. Jiang, J.H. and A. Kucernak, Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2,6-bis(imino)-pyridyl complexes. Electrochimica Acta, 2002. 47(12): p. 1967-1973.

49. Jiang, J.H. and A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 2002. 47(15): p. 2381-2386.

50. Jiang, J.H. and A. Kucernak, Electrooxidation of small organic molecules on mesoporous on precious metal catalysts I : CO and methanol on platinum. Journal of Electroanalytical Chemistry, 2002. 533(1-2): p. 153-165.

51. Jiang, J. and A. Kucernak, Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. Journal of Electroanalytical Chemistry, 2002. 520(1-2): p. 64-70.

52. Jiang, J. and A. Kucernak, Electronically conducting polymer of manganese halide complex bearing 2,6-bis(imino)pyridyl ligands. Synthetic Metals, 2002. 128(2): p. 221-227.

53. Green, C.L. and A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. Journal of Physical Chemistry B, 2002. 106(5): p. 1036-1047.

54. Green, C.L. and A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum-ruthenium electrocatalysts by underpotential deposition of copper. 2. Effect of surface composition on activity. Journal of Physical Chemistry B, 2002. 106(44): p. 11446-11456.

55. Chen, S.L. and A. Kucernak, Fabrication of carbon microelectrodes with an effective radius of 1 nm. Electrochemistry Communications, 2002. 4(1): p. 80-85.

56. Chen, S.L. and A. Kucernak, The voltammetric response of nanometer-sized carbon electrodes. Journal of Physical Chemistry B, 2002. 106(36): p. 9396-9404.

57. Kucernak, A.R. and B. Muir, Analysis of the electrical and mechanical time response of solid polymer-platinum composite membranes. Electrochimica Acta, 2001. 46(9): p. 1313-1322.

58. Jiang, J.H. and A.R. Kucernak, The electrochemistry of platinum phthalocyanine microcrystals. IV. Temperature dependence of the electrochemical behaviour in non-aqueous solution. Electrochimica Acta, 2001. 46(22): p. 3445-3456.

59. Jiang, J.H. and A. Kucernak, The electrochemistry of platinum phthalocyanine microcrystals II - A microelectrode observation of nucleation-growth controlled solid-solid phase transformations in non-aqueous solvent. Electrochimica Acta, 2001. 46(8): p. 1223-1231.

60. Jiang, J.H. and A. Kucernak, An electrochemical impedance study of the electrochemical doping process of platinum phthalocyanine microcrystals in non-aqueous electrolytes. Journal of Electroanalytical Chemistry, 2001. 514(1-2): p. 1-15.

61. Brown, R.J.C. and A.R. Kucernak, The electrochemistry of platinum phthalocyanine microcrystals III. Electrochemical behaviour in aqueous electrolytes. Electrochimica Acta, 2001. 46(16): p. 2573-2582.

62. Brett, D.J.L., et al., Measurement of the current distribution along a single flow channel of a solid polymer fuel cell. Electrochemistry Communications, 2001. 3(11): p. 628-632.

63. Kucernak, A.R., et al., Scanning electrochemical microscopy of a fuel-cell electrocatalyst deposited onto highly oriented pyrolytic graphite. Electrochimica Acta, 2000. 45(27): p. 4483-4491.

64. Jiang, J.J. and A. Kucernak, Oxygen reduction studies of templated mesoporous platinum catalysts. Electrochemical and Solid State Letters, 2000. 3(12): p. 559-562.

65. Jiang, J.H. and A. Kucernak, The electrochemistry of platinum phthalocyanine microcrystals I. Electrochemical behaviour in acetonitrile electrolytes. Electrochimica Acta, 2000. 45(14): p. 2227-2239.

66. Jiang, J.H. and A. Kucernak, Electrochemical crystallisation and characterisation of platinum phthalocyanine charge transfer salts in non-aqueous media. Synthetic Metals, 2000. 114(2): p. 209-218.

67. Jiang, J.H. and A. Kucernak, Electrochemical impedance studies of the undoping process of platinum phthalocyanine charge transfer microcrystals. Journal of Electroanalytical Chemistry, 2000. 490(1-2): p. 17-30.

68. Kucernak, A.R., et al., Anodic oxidation of methyl formate and its relationship to the reactions of methanol and formic acid. Electrochimica Acta, 1998. 43(12-13): p. 1705-1714.

69. Gun, J., et al., Sol-gel formation of reticular methyl-silicate materials by hydrogen peroxide decomposition. Journal of Sol-Gel Science and Technology, 1998. 13(1-3): p. 189-193.

70. Kucernak, A.R., et al., High-performance hydrogen anodes using a glass microfibre substrate. Journal of Applied Electrochemistry, 1997. 27(11): p. 1304-1306.

71. Burstein, G.T., et al., Aspects of the anodic oxidation of methanol. Catalysis Today, 1997. 38(4): p. 425-437.

72. Barnett, C.J., et al., Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds. Electrochimica Acta, 1997. 42(15): p. 2381-2388.

73. Burstein, G.T., et al., Anodic oxidation of methanol using a new base electrocatalyst. Journal of the Electrochemical Society, 1996. 143(7): p. L139-L140.

74. Kucernak, A.R.J., et al., PHOTOELECTROCHEMISTRY OF SILICON-DELTA-DOPED GAAS STRUCTURES. Electrochimica Acta, 1994. 39(3): p. 355-361.

75. Williams, D.E., A.R.J. Kucernak, and R. Peat, PHOTOELECTROCHEMICAL IMAGING .1. BACKGROUND AND THEORY. Electrochimica Acta, 1993. 38(1): p. 57-69.

76. Kucernak, A.R.J., R. Peat, and D.E. Williams, PHOTOELECTROCHEMICAL IMAGING .2. THE PASSIVATING OXIDE FILM ON IRON. Electrochimica Acta, 1993. 38(1): p. 71-87.

77. Williams, D.E., A.R.J. Kucernak, and R. Peat, PHOTOCURRENT IMAGING OF PASSIVE METALS. Faraday Discussions, 1992. 94: p. 149-170.

78. Peat, R., A.R. Kucernak, and D.E. Williams, PHOTOCURRENT DISTRIBUTION ACROSS THE INTERFACIAL REGION OF THE N-GAAS/ELECTROLYTE JUNCTION. Faraday Discussions, 1992. 94: p. 369-385.

79. Peat, R., A.R. Kucernak, and D.E. Williams, PHOTOELECTROCHEMICAL IMAGING OF SUBMONOLAYER LEAD DEPOSITS ON N-GAAS. Electrochimica Acta, 1992. 37(5): p. 933-942.

80. Kucernak, A.R.J., R. Peat, and D.E. Williams, DISSOLUTION AND REACTION OF SULFIDE INCLUSIONS IN STAINLESS-STEEL IMAGED USING SCANNING LASER PHOTOELECTROCHEMICAL MICROSCOPY. Journal of the Electrochemical Society, 1992. 139(8): p. 2337-2340.

81. Kucernak, A.R., R. Peat, and D.E. Williams, A PRIMITIVE MODEL FOR EVALUATING THE CONTRAST OF PHOTOCURRENT IMAGES OBTAINED AT THE SEMICONDUCTOR-ELECTROLYTE INTERFACE. Journal of the Electrochemical Society, 1991. 138(6): p. 1645-1653.

82. Williams, D.E., et al., HARWELL ATTEMPTS TO REPRODUCE THE ELECTROLYTIC COLD FUSION EFFECT. Understanding Cold Fusion Phenomena, ed. R.A. Ricci, F. Demarco, and E. Sindoni. Vol. 24. 1990. 93-98.

83. Peat, R., et al., REAL-TIME IMAGING OF PHOTOINDUCED SURFACE-REACTIONS USING A SCANNING LASER MICROSCOPE. Semiconductor Science and Technology, 1990. 5(8): p. 914-917.

84. Williams, D.E., et al., UPPER-BOUNDS ON COLD FUSION IN ELECTROLYTIC CELLS. Nature, 1989. 342(6248): p. 375-384.

85. Fontein, P.F., et al., DIFFERENTIAL MEASUREMENTS OF THE LATERAL PHOTOEFFECT IN GAAS/AIGAAS HETEROSTRUCTURES. Semiconductor Science and Technology, 1989. 4(10): p. 837-840.

Patents

86. Monroe, C.W., et al., Electrowetting device, e.g. for micro-fluidic device, has chamber containing two immiscible conductive liquids having interface, and electrodes arranged to apply voltage across interface between liquids to control shape of interface, Monroe C W; Kornyshev a; John K a R; Sylvia S a E; Urbakh M; Imperial Innovations Ltd; Univ Ramot at Tel Aviv Ltd.

87. Kucernak, A., J. Jiang, and A.I. Kucernak, Catalytic system, used for oxidation or reduction of inorganic and organic molecules, e.g. methanol, comprises catalyst containing nanoporous or mesoporous palladium and ion-exchange electrolyte, Ic Innovations Ltd.

88. Brett, D.J.L. and A.R.J. Kucernak, Fuel cell for forming a through membrane electrical connection in membrane composed of electrolyte material, comprises at least two fuel cell boards, gas flow channels, and electrical connectors, Imperial Innovations Ltd; Ucl Business Plc.

89. Brandon, N., A. Kucernak, and V. Yufit, Regenerative fuel cell includes reversible anode in anode compartment containing anolyte, reversible cathode in cathode compartment containing catholyte, anionic membrane, and conduits for carrying electrochemically active species, Imperial Innovations Ltd.

This list is compiled from a web of knowledge search for Author: Kucernak and may be neither comprehensive nor fully accurate.
The content of this website is subject to copyright restrictions © 2011-14. Website designed, built and maintained by Graham Smith. For enquiries please contact gs507@ic.ac.uk.