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Recent concerns with our environment call for the development
of environmentally benign materials. One of the most promising
and practical materials is polylactide (PLA). Because of its
biodegradability and biocompatibility, PLA is recognized as an
important material for medical and pharmaceutical applications as
well as for industrial applications such as food packaging and paper
coating.1 Commercially available PLA is poly(L-lactide) (PLLA)
mostly synthesized by the ring-opening polymerization of the
homochiral (S,S)-lactide (LLA) prepared from fermentation of corn
or sweet potato (Scheme 1).

The polymerizations of the racemic lactide (rac-LA) have recently
been studied via stereoselective catalysis, although conventional
catalysts such as Al(OiPr)3 produce atactic PLA2 which is amor-
phous and less attractive (Scheme 2a). Three distinctive synthetic
studies of isotactic PLA3 are presented in Scheme 2b-d. Spassky
originally introduced the Al-Schiff base complex and synthesized
stereoblock [PLLA-PDLA]n

4,5 (Scheme 2b) using the achiral
catalyst 1 (Chart 1). Synthesis of gradient PDLA-PLLA was
reported using homochiral (R)-26,7 (Scheme 2c), and this was the
first success of the poly(rac-LA) from rac-LA, thermally more
stable8 than homochiral PLLA (Tm 162°C9) due to a stereocomplex
formation.10 Baker and Smith then used thechiral but racemic
complex rac-2 and succeeded in the development of the living
polymerization of rac-LA to form a mixture of enantiomerically
pure (or enriched) polymer chains, PLLA and PDLA, in one
step11-13 (Scheme 2d). The last two examples using (R)- or rac-2
adopted a site control mechanism (SCM), whose key step is the
consistent differentiation of LLA or DLA throughout the poly-
merization by the catalyst coordinated by achiral binaphthyl
auxiliary. From a scientific point of view, a chain-end control
mechanism (CEM) remained unsuccessful, where the pre-catalyst
such as1 does not contain any chirality, and the stereogenic center
of the last inserted monomer determines which enantiomer is
entering the polymer terminal (Scheme 3). Although this CEM is
conceptually simple,3 no catalysts have been reported to produce a
poly(rac-LA) thermally more stable than the homochiral PLLA.
We now report a simple and highly stereoselective living poly-
merization of rac-LA for thermally more stable [PLLA-PDLA]n

via an exploration of CEM.
We examined two series of substituted catalysts3 and4 (Chart

1), both of which were simply prepared in situ by mixing Et3Al
and each ligand.14 rac-LA was polymerized in the presence of3 or
4 at 70°C.15,16 The catalytic reactivity of4 was much higher than

that of 3, and larger R1 in the aromatic rings generally induced a
higher isotacticity. Our extensive studies of the initiation reaction17

revealed that adventitious moisture from N2 influenced the activities
of the catalysts andMn values of polymers, but it did not do the
selectivity. Under a purified N2 atmosphere, three notable results
in the presence of 1 equiv of benzyl alcohol to the catalyst are
shown in Table 1. The relationship between the rac-LA conversion
to the polymer andMn was linear with a narrowMw/Mn (1.06-
1.11) throughout the polymerization using both4d and 4e. By
introduction of Ph-substituents into the aromatic rings, the poly-
merization rate was accelerated with a high selectivity, probably
because of electronic effects (entry 1).Tm of poly(rac-LA) was
measured, for it is sensitive to the stereoregularity.Tm of the
obtained poly(rac-LA) was at 170°C (Pmeso 0.81),2b which was
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Scheme 1. Commercially Available PLLA

Scheme 2. Synthesis of Isotactic PLA from rac-LA

Chart 1. Catalysts for Stereoregular PLA from rac-LA

Scheme 3. CEM for Isotactic Stereoblock Poly(rac-LA)
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slightly higher than that of the homochiral PLLA. Compared with
other reported isotactic polymerization catalysts,5,6,11 the polymer-
ization using4d was quite fast, and poly(rac-LA) of the expected
and higherMn with a narrow polydispersity was easily prepared
(entry 2). On the contrary,tBu-substituents slowed the polymeri-
zation rate (entry 3), while the highest selectivity was obtained.
The thermal properties of PLA using4e indicated a high stereo-
regularity (Tm 192 °C, ∆Hfus 48 J/g, Pmeso 0.91

2b), which was
comparable or superior to those via SCM.11-13 The stereocomplex
formation of poly(rac-LA) was confirmed by powder X-ray
diffraction. The 300 MHz1H NMR spectrum of the methine region
of poly(rac-LA) using4e is shown in Figure 1b with those of the
atactic one (Figure 1a) and homochiral PLLA (Figure 1c).

There are two possibilities for isotactic selectivity: (1) highly
selective CEM and (2) SCM from theconformational racemic
chirality constructed by the achiral ligand. The most stable
conformation of the simplistic complex4a′ by the DFT(B3LYP/
6-31G*)18 calculations is shown in Figure 2. It contained a twisted
asymmetry, while the activation energy between each conforma-
tional enantiomer was estimated at 13.7 kJ/mol, which was smaller
than that of the free rotation energy of C-2-C-3 about butane.19 It
suggested the trimethylene-backbone itself in4 be flexible. A
microstructural analysis by the homonuclear decoupled 500 MHz
1H NMR of poly(rac-LA) using 4e indicated the formation of
[PLLA-PDLA]n, which could be obtained via CEM.12,15

In conclusion, we have reported the living polymerization of rac-
LA for highly isotactic poly(rac-LA) without any chiral auxiliaries

on the catalyst. The stereoselectivity in this catalysis via CEM was
comparable to or higher than that of known polymerization via
SCM. Further studies for practical synthesis of isotactic poly(rac-
LA) from rac-LA as a thermally more stable material is in progress.
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Table 1. Polymerization of rac-LA Using 4d or 4ea

entry catalyst [rac-LA]/[Al]b time, h conv.,c % yield,d % Mn
e × 10-3 PDIf

1 4d 100 1.3 94 91 20.0 1.11

2 4d 300 4.5 93 90 59.5 1.07

3 4e 100 14 95 93 22.4 1.06

a See ref 15 for polymerization conditions.b The ratio of rac-LA/catalyst;
1 equiv of BnOH to the catalyst had been added to rac-LA.c The conversion
of rac-LA to PLA was measured by1H NMR. d Isolated yield.e The
number-average molecular weight estimated by SEC (polystyrene, CHCl3).
f Polydispersity index (Mw/Mn).

Figure 1. 1H NMR spectra of the methine region of PLA.

Figure 2. Stereoview of the most stable conformational enantiomer.
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