TI: EXTREME PKA DISPLACEMENTS AT THE ACTIVE-SITES OF FMN-DEPENDENT ALPHA-HYDROXY ACID-OXIDIZING ENZYMES AU: LEDERER_F NA: HOP NECKER ENFANTS MALAD,CNRS,URA 1461,161 RUE SEVRES,F-75743 PARIS 15,FRANCE JN: PROTEIN SCIENCE 1992 Vol.1 No.4 pp.540-548 AB: Flavocytochrome b2 (or L-lactate dehydrogenase) from baker's yeast is thought to operate by the initial formation of a carbanion, as do the evolutionarily related alpha-hydroxy acid-oxidizing FMN-dependent oxidases. Previous work has shown that, in the active site of the unligated reduced flavocytochrome b2, the group that has captured the substrate alpha-proton has a high pK(app) calculated to lie around 15 through the use of Eigen's equation. A detailed inspection of the now known three-dimensional structure of the enzyme leads to the conclusion that the high pK(a) belongs to His 373, an active site group that plays the role of general base in the forward reaction and of general acid in the reverse direction. Moreover, consideration of the kinetics of proton transfer during the catalytic cycle suggests that the pKa Of the reduced FMN N5 position should be lowered by several pH units compared to its pK(a) of 20 or more when free. The features of the three-dimensional structure possibly responsible for these pK shifts are analyzed; they are proposed to consist of a network of hydrogen bonds with the solvent and of a mutual electrostatic stabilization of anionic reduced flavin and the imidazolium ion. Finally, it is suggested that similar pK shifts affect the active sites of the alpha-hydroxy acid-oxidizing flavooxidases, which are homologous to flavocytochrome b2. The functional significance of these pK shifts in terms of catalysis and semiquinone stabilization is discussed. KP: SPINACH GLYCOLATE OXIDASE, BAKERS-YEAST, FLAVOCYTOCHROME B2, ELECTRON-TRANSFER, LACTATE OXIDASE, NUCLEOTIDE-SEQUENCE, HANSENULA-ANOMALA, PROSTHETIC GROUPS, NMR-SPECTROSCOPY, TRANSITION-STATE WA: ALPHA-HYDROXY ACID OXIDATION, FLAVOCYTOCHROME B2, FLAVOENZYMES, IONIZATION CONSTANTS, PROTON TRANSFER CR: APPLEBY_CA, 1954 Vol.173 p.749, NATURE BACHOVCHIN_WW, 1986 Vol.25 p.7751, BIOCHEMISTRY-US BAKER_EN, 1984 Vol.44 p.97, PROG BIOPHYS MOL BIO BIRKTOFT_JJ, 1983 Vol.258 p.472, J BIOL CHEM BLACK_MT, 1989 Vol.263 p.973, BIOCHEM J BRADY_L, 1990 Vol.343 p.767, NATURE BRUICE_TC, 1980 Vol.13 p.256, ACCOUNTS CHEM RES BRUICE_TC, 1984 p.45, FLAVINS FLAVOPROTEIN CAPEILLEREBLAND.C, 1975 Vol.56 p.91, EUR J BIOCHEM CAPEILLEREBLAND.C, 1975 Vol.54 p.549, EUR J BIOCHEM CEDERLUND_E, 1988 Vol.173 p.523, EUR J BIOCHEM CHERFILS_J, 1988 Vol.6 p.155, J MOL GRAPHICS CHOONG_YS, 1980 Vol.255 p.8672, J BIOL CHEM DIJKSTRA_BW, 1981 Vol.147 p.97, J MOL BIOL DUBOIS_J, 1990 Vol.29 p.6393, BIOCHEMISTRY-US EBERLEIN_G, 1983 Vol.105 p.6685, J AM CHEM SOC EIGEN_M, 1964 Vol.3 p.1, ANGEW CHEM INT EDIT GANDOUR_RD, 1981 Vol.10 p.169, BIOORG CHEM GHISLA_S, 1991 Vol.2 p.243, CHEM BIOCH FLAVOENZY GHISLA_S, 1989 Vol.181 p.1, EUR J BIOCHEM GHISLA_S, 1982 p.133, FLAVINS FLAVOPROTEIN GHISLA_S, 1991 p.27, FLAVINS FLAVOPROTEIN GHISLA_S, 1991 p.123, FLAVINS FLAVOPROTEIN GHISLA_S, 1977 Vol.252 p.6729, J BIOL CHEM GIEGEL_DA, 1990 Vol.265 p.6626, J BIOL CHEM HALLE_JC, 1981 Vol.256 p.8569, J BIOL CHEM HIBBERT_F, 1986 Vol.22 p.113, ADV PHYS ORG CHEM JACQ_C, 1974 Vol.411 p.311, EUR J BIOCHEM KOMIYAMA_M, 1977 Vol.74 p.2634, P NATL ACAD SCI USA KOSSIAKOFF_AA, 1981 Vol.20 p.6462, BIOCHEMISTRY-US KUO_DJ, 1987 Vol.26 p.7589, BIOCHEMISTRY-US LE_KHD, 1991 Vol.266 p.20877, J BIOL CHEM LEDERER_F, 1991 Vol.2 p.153, CHEM BIOCH FLAVOENZY LEDERER_F, 1978 Vol.88 p.425, EUR J BIOCHEM LEDERER_F, 1985 Vol.139 p.59, EUR J BIOCHEM LEDERER_F, 1984 p.513, FLAVINS FLAVOPROTEIN LEDERER_F, 1987 p.133, FLAVINS FLAVOPROTEIN LEDERER_F, 1991 p.773, FLAVINS FLAVOPROTEIN LIANG_TC, 1987 Vol.26 p.7603, BIOCHEMISTRY-US LINDQVIST_Y, 1989 Vol.264 p.3624, J BIOL CHEM LINDQVIST_Y, 1991 Vol.266 p.3198, J BIOL CHEM LINDQVIST_Y, 1989 Vol.209 p.151, J MOL BIOL LINDQVIST_Y, 1985 Vol.82 p.6855, P NATL ACAD SCI USA MASSEY_V, 1969 Vol.244 p.3999, J BIOL CHEM MASSEY_V, 1980 Vol.255 p.2796, J BIOL CHEM MATHEWS_FS, 1987 p.123, FLAVINS FLAVOPROTEIN POMPON_D, 1980 Vol.106 p.151, EUR J BIOCHEM PORTER_DJT, 1973 Vol.248 p.4400, J BIOL CHEM REID_GA, 1988 Vol.178 p.329, EUR J BIOCHEM RISLER_Y, 1989 Vol.17 p.8381, NUCLEIC ACIDS RES ROSE_IA, 1989 Vol.28 p.9579, BIOCHEMISTRY-US ROSE_IA, 1990 Vol.29 p.4312, BIOCHEMISTRY-US SUCK_D, 1986 Vol.321 p.620, NATURE TEGONI_M, 1986 Vol.155 p.491, EUR J BIOCHEM TEGONI_M, 1988 Vol.263 p.19278, J BIOL CHEM TSOU_AY, 1990 Vol.29 p.9856, BIOCHEMISTRY-US URBAN_P, 1988 Vol.27 p.7365, BIOCHEMISTRY-US URBAN_P, 1983 Vol.134 p.275, EUR J BIOCHEM URBAN_P, 1988 Vol.173 p.155, EUR J BIOCHEM URBAN_P, 1985 Vol.260 p.11115, J BIOL CHEM VENKATARAM_UV, 1984 Vol.106 p.5703, J AM CHEM SOC WALKER_MC, 1991 Vol.30 p.5546, BIOCHEMISTRY-US WEAVER_LH, 1977 Vol.114 p.119, J MOL BIOL WINKLER_FK, 1990 Vol.343 p.771, NATURE XIA_ZX, 1990 Vol.12 p.837, J MOL BIOL XIA_ZX, 1987 Vol.84 p.2629, P NATL ACAD SCI USA RF: 1517_92 2 TORPEDO ACETYLCHOLINESTERASE, CATALYTIC TRIAD, LIPOPROTEIN-LIPASE GENE, SITE-DIRECTED MUTAGENESIS, MISSENSE MUTATIONS, FAMILIAL CHYLOMICRONEMIA 4074_92 1 14-KDA GROUP-II PHOSPHOLIPASE-A2, MICELLAR LIPID WATER INTERFACES OF COMPETITIVE INHIBITORS, IMMUNOCHEMICAL QUANTITATION