1. Historic Perspective

1.1. First Polymers

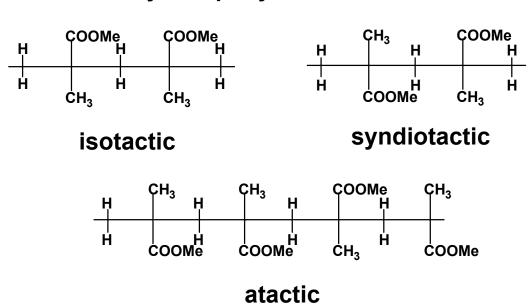
1.1.1. "Prehistoric" Polymers

• Cellulose (Polysaccharide / Glucose)

cellulose chain segment

1.1.2. Synthetic Polymers

1770	 Priestly wrote: "I have seen a substance excellently adapted to the purpose of wiping from paper the marks of black pencil (referring to "india rubber"). 	cis-isoprene	
1805	Description of rubber elasticity by Gough. Stretching creates heat.	crosslinking	
1823	 MacIntosh patented a process in which rubber was used to bond two layers of fabric for the production of a waterproof sheet 	polymer interphase	
1826	 Faraday working on the analysis of rubber. 		
1832	Berzelius uses the term "polymeric"		
1839	C. Goodyear discovered the process of rubber vulcanisation	crosslinking / sulphur	
1845	Blyth and Hofmann observed that "metastyrol" was formed when styrene was exposed to sunlight, while it remained unchanged in the dark. This is probably the first report of photopolymerisation.	styrenepolystyrenephotopolymerisation	
1872	 The acid catalysed condensation of phenol with methylal into Bakelite was reported by Baeyer 	phenol resinscondensationcrosslinking	
1879	 Bouchardat, exposing isoprene to concentrated hydrochloric acid, obtained as one of the product a solid which "has the composition of isoprene". This product subjected to dry distillation yields the same product as rubber. 	 polymer characterisation identification of repeat unit 	
1900	 Bamberger and Tschirner found another route to polyethylene using diazomethane (instead of acid catalysis) Kondakov demonstrated the polymerisation of 2,3-dimethyl butadiene. 	radical addition polymerisation	
1906	 E. Fischer coined the term polypeptide. He embarked on the laborious step-by-step synthesis in order to obtain chain molecules. 	polypeptidestepwise synthesisdendrimers	
1907	Fischer had synthesised an octadeca peptide.Baekeland patented his "heat and pressure" process (Bakelite)		
1917	 In a lecture to the Swiss Chemical Society, Staudinger speculated for the first time that "high molecular compounds" consist of covalently bonded long-chain molecules. 	 polymers are hold together by covalent bonds 	
1927	 Hengstenberg provided the first unambiguous proof on crystallographic grounds that a synthetic polymer (polyoxymethylene) consists of long chain molecules. Accidental discivery of "plexiglass" in an attempt to prepare a sheet of PMMA. 	polymer characterisationx-ray crystallographypolyformaldehyde	
1930	 Carothers and Hill succeeded in the preparation of the first synthetic fibre by high vacuum technique and cold drawing. 	Nylonpolymer fibrespolycondensation	
1939	 High pressure process for the production of polyethylene patented by ICI. 	polyethylene	
1951	 Discovery of coordination polymerisation by Ziegler and coworkers. Discovery of interfacial polymerisation (nylon rope trick). 	polyethylenepolypropylenetacticityinterfacial polymerisation	


Rubber (cis polyisoprene)

Polyethylene (polythene)

Polystyrene

Poly(methyl methacrylate)

1.1.3. Tacticity / Property

Polymer Tg (°C) syndiotactic atactic isotactic poly(methyl 145 105 45 methacrylate) poly(ethyl 65 12 methacrylate) poly(propylene) -18 (Tm= 165°C

1.2. What Makes Polymers Special?

- Chain Entanglement
- Summation of Intermolecular Forces
- Time Scale of Motion

Polymers exhibit a number of properties that sets them apart from small molecules.

- Mechanical Strength
- Elasticity
- Plasticity
- Thermal Stability
- Tuning of Properties
- Conductivity
- Insulation
- Chemical Inertness
- Usually Lightweight

2. Polymerisation

Initiation

Here a reactive species is generated that reacts with the monomer to yield an activated chain end ready to react with another monomer subsequently.

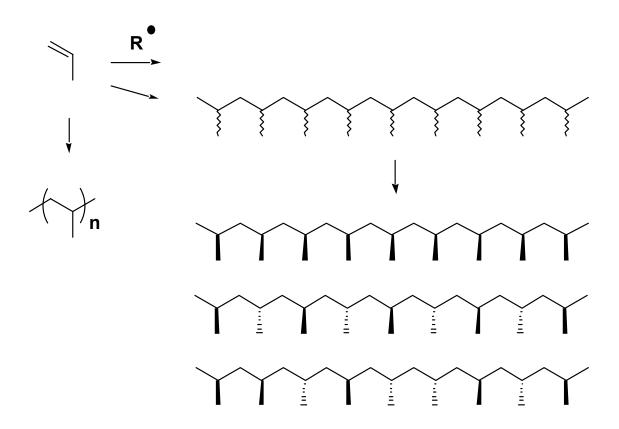
Propagation

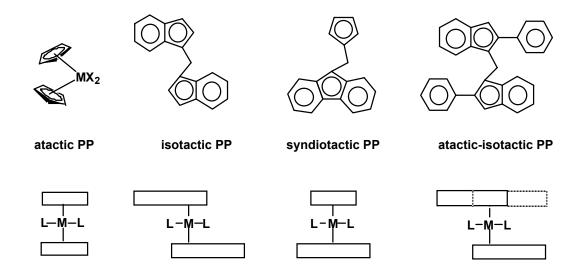
A reactive polymer chain end adds on more monomers.

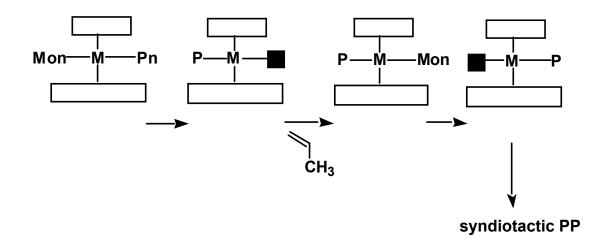
Termination

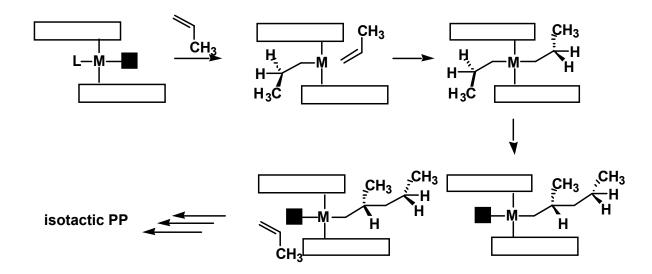
Further addition of monomers to a growing polymer chain is inhibited through deactivation (side reaction) of the propagating chain end.

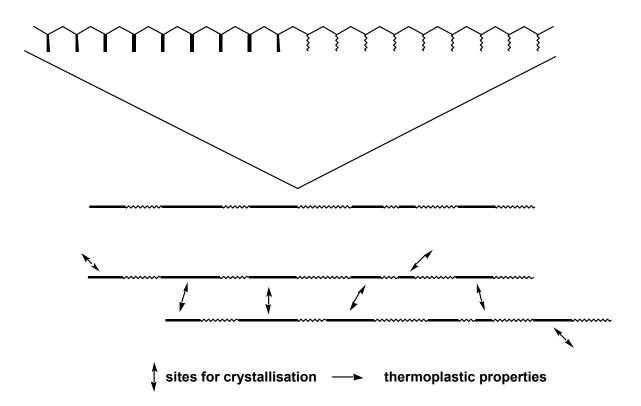
Chain Transfer

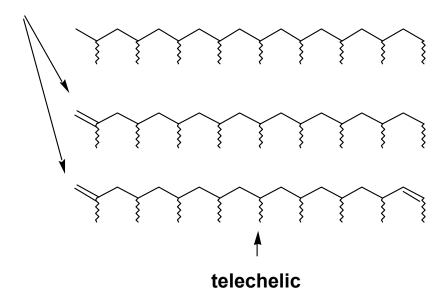

This is essentially a side reaction that leads to the termination of one polymer chain but as a chemical consequence of the termination chemistry, a new polymer chain is initiated. The overall result is a decrease in molecular weight.

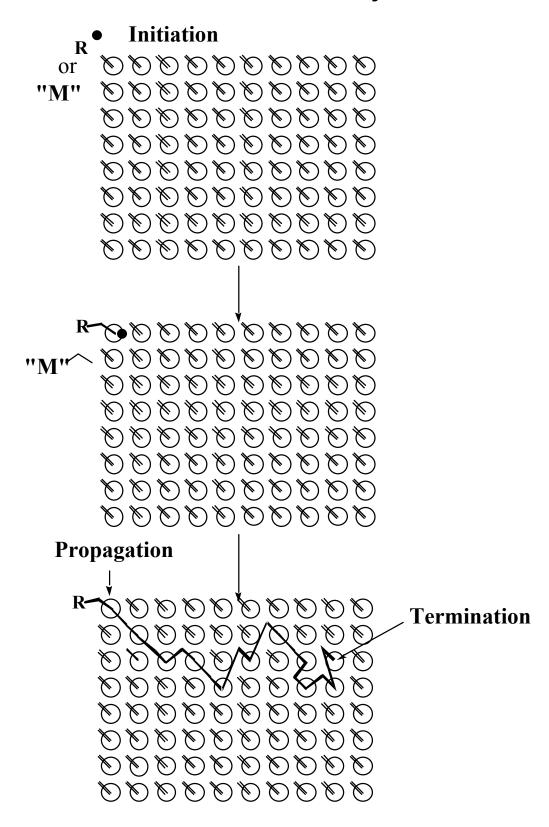

2.1. Two Examples - A


Initiation, propagation and termination in the polymerisation of methyl methacrylate.


MMA
$$OOO$$
 $R-N=N-R$
 $R-N=N-R$


2.1. Two Examples - B





polymerisation sites

2.1.1. Kinetics of Chain Growth Polymerisation

2.2. Step-Growth Polymerisation

2.2.1. Linear Polymers

Polycondensation

2.2.1.1. Carother's Equation

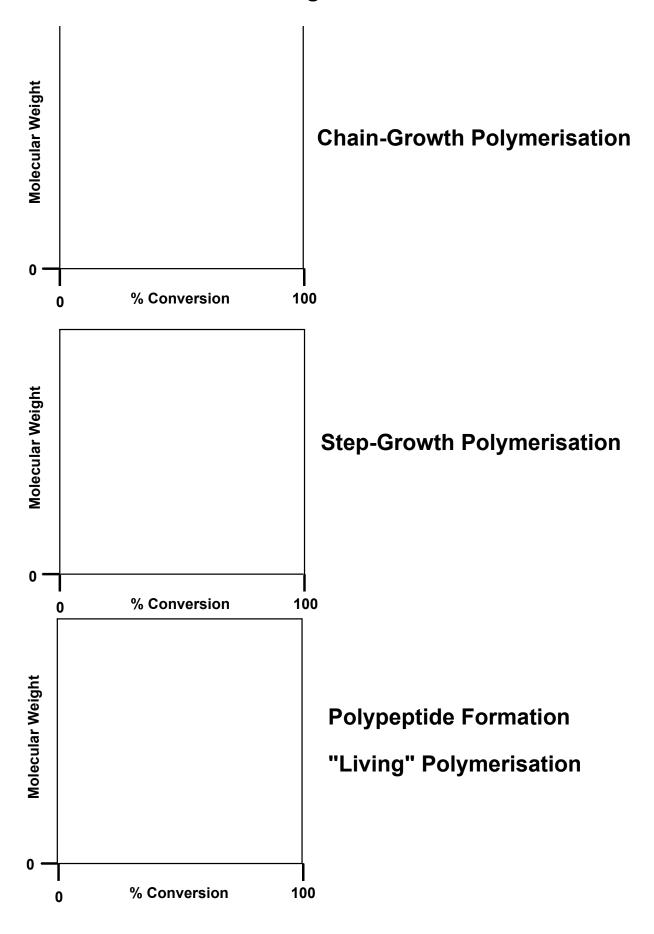
Crucial for a successful synthesis of high molecular weight polymers is the purity of the starting materials. The correct 1:1 (equimolar) ratio of starting materials becomes paramount if the step polymerisation is carried out using two or more monomers at the same time.

The degree of polymerisation (average number of monomer units per polymer chain) in step polymerisation can be calculated by using Carother's equation.

p = probability of finding a reacted functional group A

= conversion or extent of reaction of A groups

1-p = probability of finding an unreacted functional group


$$\overline{X}_n = \frac{1}{1 - p}$$
 (Carother's equation)
 $\overline{X}_n = \text{degree of polymerisation}$

р	Xn
0.900	10
0.990	100
0.998	500

2.2.1.2. Kinetics o	f Polycondensation				
Monomers					
	Polymerisation				
Monomers Dimers Trimers Tetramers Pentamers	O O O O O O O O O O O O O O O O O O O				
Trimers					
Tetramers	00000000				
Pentamers	000000000000000000000000000000000000000				
Hexamers	000000000000000000000000000000000000000				
Septamers	000000000000000000000000000000000000000				

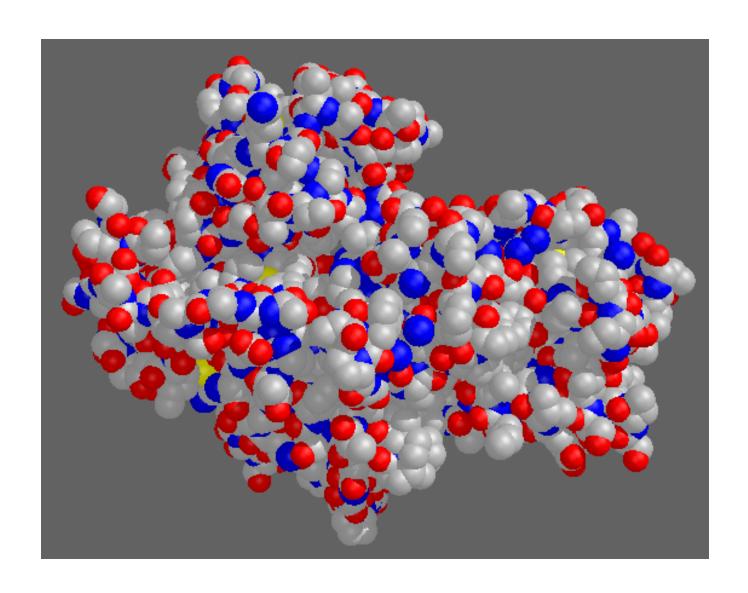
Polymerisation

2.2.1.3. Molecular Weight vs Conversion

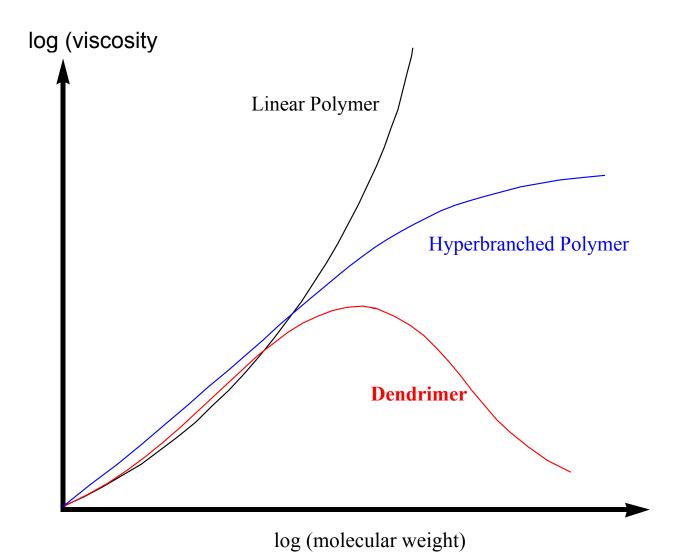
2.2.1.4. Influence of Monomer Structure

Polycondensation

3. Polymer Structure

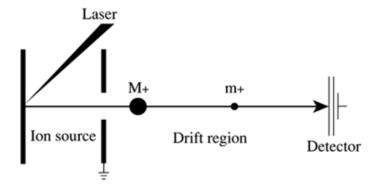

3.1. Monomers

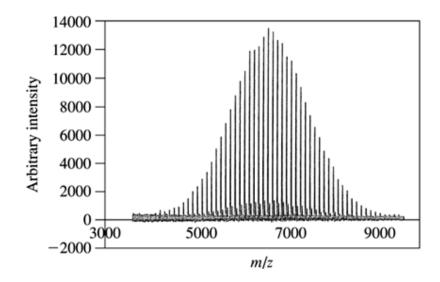
3.1.1. Synthetic Monomers

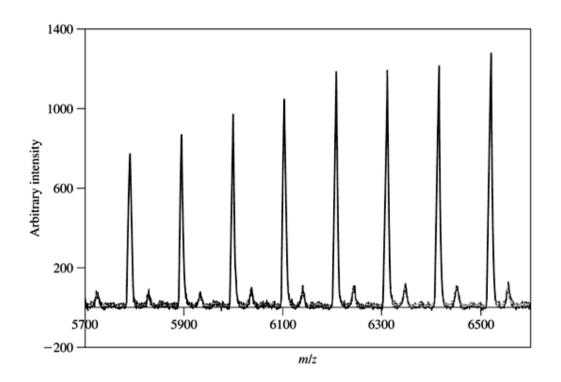

methyl methacrylate styrene vinyl acetate butyl vinylether

epsilon-caprolactam p-aminobenzoic acid

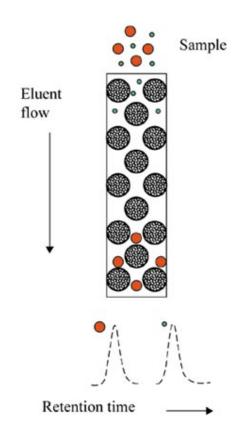
3.2. Branched Homopolymers

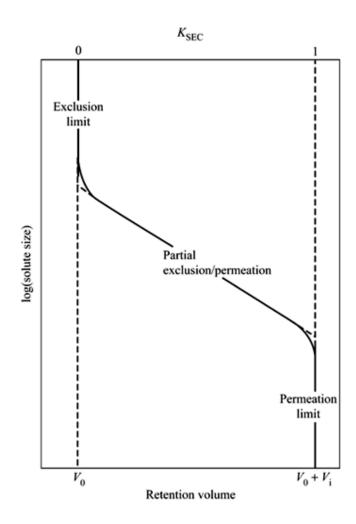

3.2.1. Viscosity versus Polymer Architecture

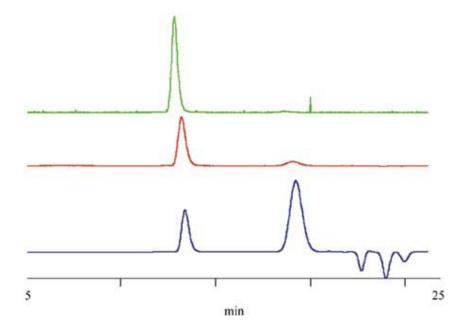

3.3. Characterisation


- NMR spectroscopy
- IR spectroscopy
- UV spectroscopy
- Mass spectrometry
- Chromatography
- Elemental analysis

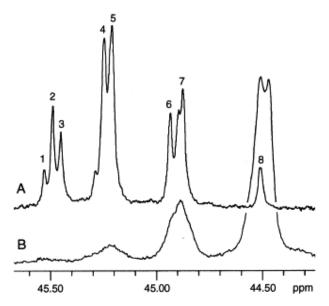
MALDI-tof

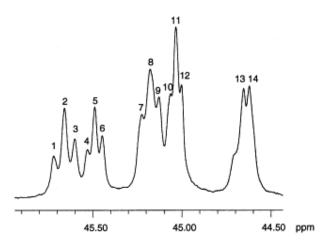



MALDI-tof-ms of polystyrene around 7000 molecular mass. This maldi spectrum was generated using dithranol as the matrix and AgTFA as the salt. The polystyrene, dithranol, and salt were dissolved in tetrahydrofuran. The solution was then electrosprayed onto the sample plate. The polymer analysed in reflectron mode with an extraction voltage of about 25 keV.



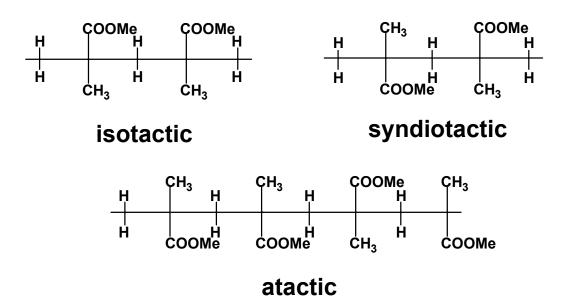
Gel Permeation Chromatography - GPC (Size Exclusion Chromatography - SEC)



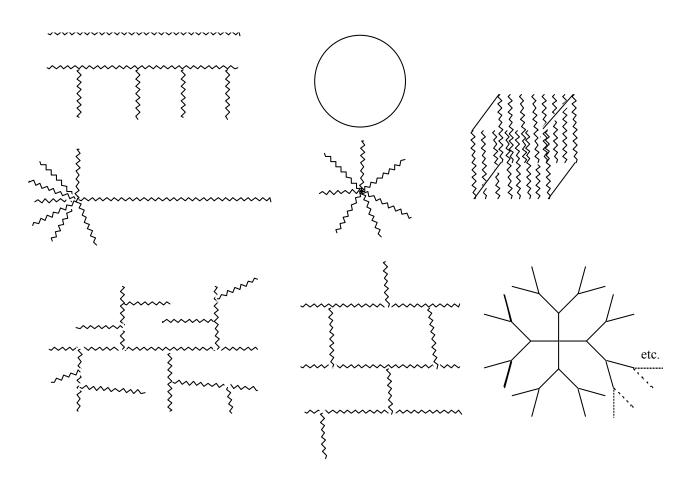

Comparison of detector sensitivity for DRI (bottom), viscosity (middle), and light scattering (top) for two narrow PS standards ($M_{\rm peak}$ 186,000 and 1260). Columns: 2 × PLgel 5 μ m MIXED-C 300 × 7.5 mm, eluent: THF, flow rate: 1 mL/min, temperature: 40°C.

NMR spectroscopy

 13 C NMR spectra of methylene carbon of poly(vinyl alcohol)s measured in DMSO- d_6 : (A) S-PVA; (B) I-PVA.

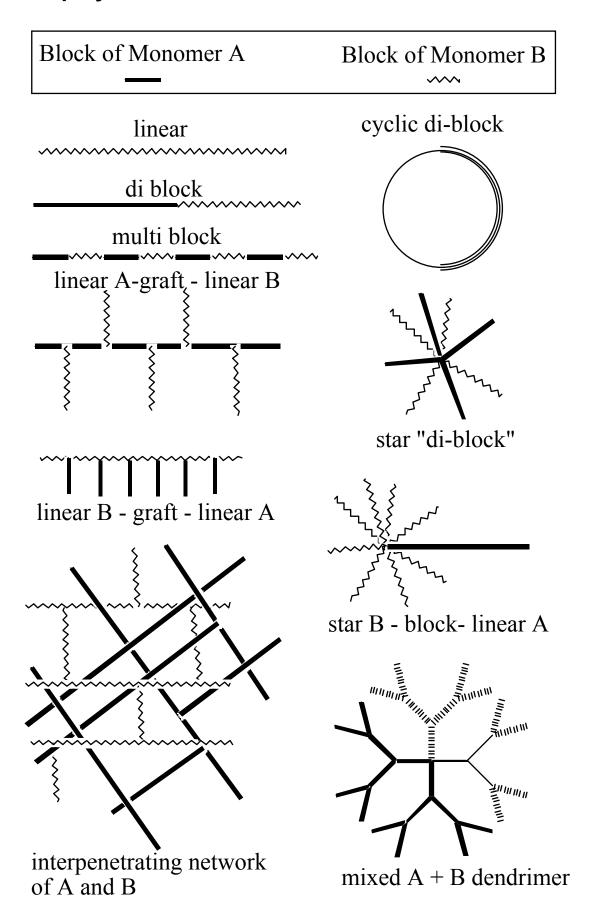


 $^{13}\mathrm{C}$ NMR spectra of methylene carbon of atactic poly(vinyl alcohol) measured in $\mathrm{D}_2\mathrm{O}$.


Assignment of methylene carbon spectra of atactic poly(vinyl alcohol) in D₂O at 100°C

Peak no.	Chemical shift (ppm)	Assignment	A-PVA $(r = 0.54)$	
			Observed	Calculated ^a
1	45.72	mitim	0.038	0.033
2	45.66	DHIII	0.070	0.078
3	45.60	mm	0.041	0.046
4	45.53	пини	0.029	0.028
5	45.49	mimir + mmim	0.059	0.065
6	45.45	1111111	0.051	0.038
7	45.23	mmm	0.075	0.057
8	45.18	mmm + mmm	0.118	0.133
9	45.13	EDHOTET.	0.066	0.076
10	45.07	mmim	0.058	0.050
11	45.04	mnm + mnma	0.107	0.115
12	45.01	munit	0.079	0.066
13	44.56	mmmm + mmmr +	0.101	0.104
		mmmmm		
14	44.53	$\mathbf{mnmr} + \mathbf{mmmmr} + \mathbf{rmmmr}$	0.109	0.111

^a Assuming Bernoullian statistics for $P_{\rm m}$ =0.46.



3.4. Homopolymer Architectures

3.5. Ziegler-Natta / Metallocene / Schiff Base Catalysts

3.6. Copolymer Architectures

$$\langle \rangle_n \langle \rangle_m$$

PE-block-isoPP

4. Polymerisation Techniques

- Bulk
- Solution
- Suspension
- Emulsion