
Lecture 5: Asymmetric Addition of Carbon Nucleophiles 
to Aldehydes, Imines and Enones
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Catalytic asymmetric addition of organozincs to aldehydes

Noyori, J. Am. Chem. Soc., 1989, 111, 4028; theoretical study of mechanism: J. Am. Chem. Soc., 1995, 
117, 6327;

Review of asymmetric organozinc additions to aldehydes: Chem. Rev., 1992, 92, 833

Noyori was among the first to demonstrate the catalytic asymmetric addition of organometallics to aldehydes; 
requires the use of organozinc reagents which are unreactive towards aldehydes normally, but are activated
in the presence of amino alcohols:
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Non-linear effects in reaction of Et2Zn with aldehydes
Noyori discovered an extraordinary non-linear effect: using 
additive of just 15% ee, he obtained product of 95% ee: almost as 
good as with enantiomerically pure additive!
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• If DAIB is not enantiomerically pure, three possible dimers: (+)-DAIB/((+)-DAIB; (-)/(-); (+)/(-)
• (+)/(-)-dimer is the most stable, and shows little tendency to dissociate
• Minor catalyst enantiomer  is “tied up” as stable, unreactive heterochiral dimer
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Catalytic asymmetric addition of organozincs to aldehydes via titanium

Review of functionalised organozinc additions to aldehydes: Chem. Rev., 1993, 93, 2117

there are other protocols for asymmetric addition of organozincs, mostly centering on transmetallation.  One 
good system is Knochel's titanium diamide, which gives excellent ee's.

the limiting factor in this reaction is still the availability of the organozinc, and Knochel has developed two methods
for the synthesis of functionalised organozincs:
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In situ generation of nucleophilic organometallic species

asymmetric addition of organometallics to aldehydes is a useful method in asymmetric synthesis but is hampered
by the need for stoichiometric organometallics.  A much more  attractive option would be to generate the 
organometallic in situ, but this approach is unlikely to be successful in the presence of electrophiles (eg aldehydes).
One exception are terminal alkynes, which are known to undergo metal assisted deprotonation by Et3N:

Carreira, J. Am. Chem. Soc., 1999, 121, 
11245
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Catalytic asymmetric addition of terminal alkynes to carbonyls

asymmetric addition of organometallics to aldehydes is a useful method in asymmetric synthesis but is hampered
by the need for stoichiometric organometallics.  A much more  attractive option would be to generate the 
organometallic in situ, but this approach is unlikely to be successful in the presence of electrophiles (eg aldehydes).
One exception are terminal alkynes, which are known to undergo metal assisted deprotonation by Et3N:

Carreira,  Acc. Chem. Res., 2000, 33, 373.
J. Am. Chem. Soc., 2000, 122, 1806: stoichiometric in Zn(OTf)2, amine and N-methylephedrine
J. Am. Chem. Soc., 2001, 123, 9687: can use sub-stoichiometric amounts (ca. 20 mol% Zn(OTf)2 and N-methylephedrine, 50 mol% 
Et3N) by carrying out the reaction at 60°C in toluene
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Asymmetric Strecker reactions - initial studies
Lipton expanded on previous results in asymmetric cyanohydrin formation using imidazole containing 
diketopiperazines; he found that the imidazole did not catalyse the Stecker reaction but that the use of more
basic guanidine containing amino acids did the trick:

Lipton, J. Am. Chem. Soc., 1996, 118, 4910
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Asymmetric Strecker reactions - simple organic catalysts

Recently, Corey has shown that a simple C2-symmetric guanidine also catalyses the reaction.  His proposed 
mechanism suggests a possible method by which the Lipton catalysts may be working.

Corey, Org. Lett., 1999, 1, 157
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Asymmetric Strecker reactions - parallel catalyst discovery

Snapper and Hoveyda had already used peptidyl substituted Schiff bases as ligands for Lewis acids
in asymmetric epoxide opening reactions.  As can be seen below, the modular design allows for variation of 
four components (five if the metal salt is included).  A sample ligand was prepared and screened for catalysis of 
the Strecker reaction with TMSCN using a variety of metals.  Ti(OiPr)4 was the metal of choice; systematic 
variations then revealed the optimum structure to be that shown, with the X-group variable depending on the imine.

Snapper and Hoveyda, J. Am. Chem. Soc., 1999, 121, 4284
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Asymmetric Strecker reactions - parallel catalyst discovery

Snapper and Hoveyda, J. Am. Chem. Soc., 1999, 121, 4284

proposed mechanism based upon the rate and selectivity enhancing ability of the isopropanol additive.
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Asymmetric Strecker reactions - parallel catalyst discovery

Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901

Jacobsen tried the same approach, but on solid phase.  This greatly simplifies the synthesis of the ligands 
and the screening; it also means that you have a ready made heterogeneous catalyst for use!
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Asymmetric Strecker reactions - parallel catalyst discovery

Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901

in his final library, he had observed that the urea and caproic acid unit were giving problems, so these 
were replaced by thiourea and direct linkage to the resin support respectively.
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gratifyingly, the solution phase analogue behaved even better and, despite being optimised for benzaldimines, 
the catalyst proved to be general:  even aliphatic enolisable imines worked, the first time that they had been 
successfully used in a catalytic asymmetric Strecker.
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Asymmetric Strecker reactions - bifunctional asymmetric catalysis
Shibasaki has developed many catalysts which work by dual catalysis, ie the same molecule has two different 
reactive functionalities which work together to promote the reaction.  One example is the use of Lewis acid/
Lewis base promotion of the addition of TMSCN to aldehydes and imines:

Shibasaki, J. Am. Chem. Soc., 1999, 121, 2641; Angew. Chem., Int. Ed. Engl., 2000, 39, 1651
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Asymmetric Strecker reactions - one-pot synthesis
all of the reactions so far have required pre-formed imines; it would of course be more convenient simply to 
mix cyanide, aldehyde and imine with the catalyst and go directly to the product.  This has now been achieved
by Kobayashi (J. Am. Chem. Soc., 2000, 122, 762).
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Catalytic asymmetric addition of organozincs to enones/enoates

Review of phosphoramidites in asymmetric synthesis: Acc. Chem. Res., 2000, 33, 346

one of the best catalyst systems for conjugate addition of organozincs involves transmetallation to copper
phosphoramidite complexes.  The phosphoramidite ligands of Feringa are, in contrast to many compounds 
of this type, relatively stable to hydrolysis.  Cu(OTf)2 is the most convenient source of copper, and is apparently
reduced to Cu(I) in situ.
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Catalytic asymmetric addition of carbon nucleophiles to enones/enoates
additions of organometallics to acyclic enones/enoates remains a challenging field, with no general solution as yet.  
One very promising approach, however, utilises boronic acids, a range of which are commercially available:
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Mechanism (see J. Am. Chem. Soc., 2002, 124, 5052):
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