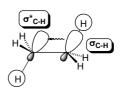
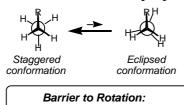

Chemistry II (Organic): Introduction to Stereoelectronics

STRUCTURE: Conformational analysis and ground state stereoelectronics of hydrocarbons


Dr Alan Spivey; Office: 834 C1; e-mail: a.c.spivey@imperial.ac.uk; Tel.: 45841

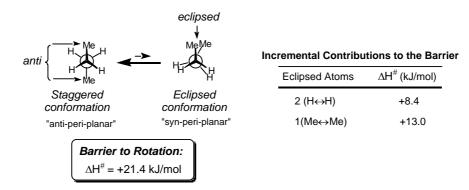
SATURATED HYDROCARBONS:

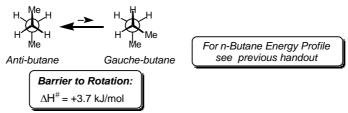
Saturated hydrocarbons prefer to exist in the staggered conformation. The eclipsed conformers suffer from unfavorable eclipsing interactions (i.e. non-bonded, van der Waals repulsions between the atoms concerned) which are minimised in the staggered conformation. Additionally, there is a stereoelectronic preferrence for adopting a staggered conformation because this arrangement has all the bonds on ajacent carbons anti periplanar to each other thereby allowing six σ -> σ * stabilising interactions. For a recent theoretical discussion of the relative importance of these effects see: L. Goodman *Nature*, **2001**, *411*, 539 and 565.


van der Waals repulsion is at maximum when eclipsed (shown) and minimum when staggered

σ_{C-H}->σ*_{C-H} 'Cieplak' stabilising effects are at maximised when staggered (all six interacting bonds are anti periplanar)

The sum of these two factors is referred to as *torsional*- or *Pitzer strain*. For hydrocarbons, the stereoelectronic component of this term is roughly constant irrespective of whether C-H or C-C bonds are involved since both types of bond have roughly similar σ -donor and σ^* -acceptor characteristics. In contrast, the van der Waals, non-bonded component is strongly dependent on the groups (substituents) concerned: i.e. a Me group is clearly 'bigger' than a H group! Having said this, the difference in 'apparent size' between these two groups is not as large as might be expected and this is because a C-C bond is also longer than a C-H bond (1.54Å cf. 1.09Å).


We can roughly estimate barriers to rotation around hydrocarbon bonds by simple calculations. An eclipsing interaction between two H groups is roughly worth 4.2 kJ/mol, whereas that between a Me and a H group raises the energy by about 5.9 kJ/mol. Thus, the barrier to rotation around a C-C bond is about 12.6 kJ/mol in ethane but 14.3 kJ/mol in propane.

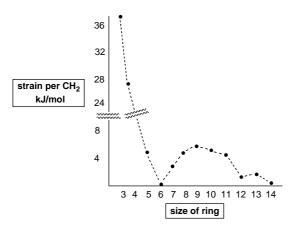

 $\Delta H^{\#}$ = +12.6 kJ/mol, when R = H $\Delta H^{\#}$ = +14.3 kJ/mol, when R = Me

Incremental Contributions to the Barrier			
Structure	Eclipsed Atoms	$\Delta H^{\#}$ (kJ/mol)	
Ethane	3 (H↔H)	+12.6	
Propane	{2 (H↔H) 1(H↔Me)	+8.4	
•	[[] 1(H↔Me)	+5.9	

As one would expect, the eclipsing interaction between two Me groups is more costly, about 13 kJ/mol. The values for the interactions discussed above, interactions between two H groups, an H and a Me group, and two Me groups can be used to approximate the rotational barrier for butane (see below).

A third possible conformer is the gauche form. The difference in energy between anti butane and a gauche butane is 3.7 kJ/mole. That is, the torsional interaction between two Me groups gauche to each other costs ca. 3.7 kJ/mol (widely known as the *gauche-butane interaction*).

An axial Me group in cyclohexane suffers from two *gauche butane interactions*; the 'A value' (i.e. the free energy corresponding to the value between the axial and equatorial Me-cyclohexane, see textbook) is therefore 7.4 (2 x 3.7 kJ/mol).


2 gauche-butanes in axial methylcyclohexane; $2 \times 3.7 = 7.4 \text{ kJ/mol}$. (The A value of Me is 7.4 kJ/mol)

In addition to *Pitzer strain* there are a number of other important interactions (strains) which are important in determining the conformation of certain hydrocarbons. These include:

Syn pentane interactions: When two Me groups five atoms apart from each other adopt a syn conformation, as shown below, the two Me units are within about 2.5 Å of one another, and due to resulting van der Waals repulsion, such an orientation becomes rather costly (ca. 15.4 kJ/mol). This interaction is commonly referred to as the *syn-pentane* (or *1,3-flagpole*) *interaction* and is encounterd between axial Me groups in cyclohexane chair-type structures.

$$\begin{array}{c} \text{syn-pentane} \\ \text{interaction} \\ \text{Me} \\ \text{Me} \\ \end{array} \begin{array}{c} \text{Me} \\ \text{Me}$$

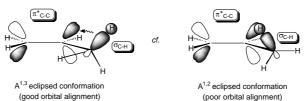
Bond angle- or **Baeyer strain**: An sp³ hybridised carbon ideally has a tetrahedral geometry with all bond angles ~109°. Deviation from this ideal incurrs an energetic penalty known as **Baeyer strain** both in a compressive (<109°) and tensile (>109°) sense. The *total* strain per CH₂ group for cyclanes (i.e. saturated cyclic hydrocarbons) are tabulated below. Of course the *total* strain energy includes unavoidable **Pitzer-and Prelog strain**. The former is particularly significant in small and medium rings (n=3-5 & 8-11) and the latter (see below) in medium rings (8-11).

Size of ring	Strain per CH ₂ (kJ/mol)	Total Strain (kJ/mol)
3	38.4	115
4	27.5	110
5	5.19	26
6	0.09	0.54
7	3.74	_26_
8	5.06	40.5
9	5.86	52.7
10	5.18	51.8
11	4.30	47.3
12	1.43	17.2
13	1.66	21.6
14	0.57	8
15	0.51	7.6
16	0.50	8

Ring strain in cyclanes

Transannular- or **Prelog strain**: One might question why medium rings are so strained, even though it is easy to construct puckered models for them that are free of **Baeyer strain**. However, models of medium rings that are free of **Baeyer strain** tend to have large numbers of pairs of eclipsed hydrogen atoms on adjacent CH_2 groups (i.e. significant **Pitzer strain**); moreover, with rings in the C_8 - C_{11} range, such H atoms will tend to "bump" each other across the ring, leading to so-called **transannular-** or **Prelog strain**. Like Pitzer strain this strain arises from the van der Waals repulsions, but not between groups on adjacent carbon atoms.

The lowest energy conformation adopted by a given hydrocarbon will be that in which the most effective compromise between all these factors is attained.

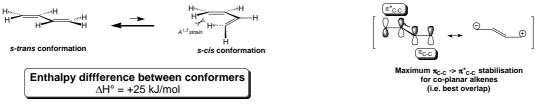

UNSATURATED HYDROCARBONS:

 Sp^3 hybrid groups bonded to C-C double bonds (i.e. sp^3 - sp^2 systems) prefer to exist in an $A^{1,3}$ eclipsed conformation rather than an $A^{1,2}$ eclipsed conformation. These conformations can be compared with those of eclipsed and staggered as analysed above for sp^3 - sp^3 systems. For propene the barrier to rotation is 8.0 kJ/mol (*cf.* propane 14.8kJ/mol).

A^{1,3} eclipsed conformation

Enthalpy diffference between conformers
$$\Delta H^{\circ} = +8.0 \text{ kJ/mol}$$

This preference is stereoelectronic in origin. The $A^{1,3}$ eclipsed conformation allows for better overlap of the orbitals for a $\sigma_{\text{C-H}}$ -> $\pi^*_{\text{C-C}}$ stabilising interaction relative to the corresponding interaction in the $A^{1,2}$ eclipsed conformation. This better overlap is a consequence of the ~109° angle subtended by the 'lobes' of the $\pi^*_{\text{C-C}}$ orbital relative to the C=C axis. This is also of course why more substituted double bonds are more stable than less substituted ones.


However, van der Waals interactions dominate affairs when groups other than H are involved. C-C double bonds are shorter than C-C single bonds; the two Me groups in alkene **B** are therefore brought in closer to one another than they are in the corresponding alkane **A** which suffers a *syn pentane* interaction

in the conformation drawn. The resulting eclipsing interaction is consequently more costly (16.3 kJ/mol) and is referred to as $A^{1,3}$ allylic strain.

The C-C-C angle in an alkane (~109°) is smaller than a C-C-C angle in an alkene (~120°). As a result, in comparison to an eclipsed butane interaction (\mathbf{C}), in the related alkene (\mathbf{D}) the Me groups are more distant and the torsional strain is lower. This type of eclipsing interaction in olefins is referred to as $A^{1,2}$ allylic strain.

From this analysis we can see that the lowest energy conformation of an alkene will be a compromise between minimising $A^{1,3}$ allylic strain and $A^{1,2}$ allylic strain. The former is the more significant interaction and consequently the conformation adopted by a more complex alkene is typically that in which the smallest group is $A^{1,3}$ eclipsed.

Dienes contain sp² hybrid groups bonded to C-C double bonds (i.e. they are sp²-sp² systems) and prefer to exist in conformations in which both double bonds are co-planar. This preference is stereoelectronic in origin. A co-planar orientation of double bonds allows for optimal overlap of the orbitals for a $\pi_{\text{C-C}} > \pi^*_{\text{C-C}}$ stabilising interaction. Additionally, the *s-trans* conformation is preferred over the *s-cis* conformation. This is so as to minimise $A^{I,3}$ allylic strain. The case of butadiene is shown below.

Bi-aryls are interesting sp^2-sp^2 systems. These compounds suffer from extreme $A^{1,3}$ allylic strain between adjacent *ortho* aromatic substituents. These van der Waals repulsions force these compounds to adopt conformations in which the rings are not co-planar but have a dihedral angle of ~45°. This is a compromise between a stereoelectronic preference to be co-planar ($\pi_{C-C^-}>\pi^*_{C-C}$, as above) and the aforementioned unfavourable $A^{1,3}$ allylic interactions between *ortho* substituents. If at least three *ortho* substituents are large then the co-operative $A^{1,3}$ allylic interactions restrict C-C bond rotation to such an extent that the two conformers become configurationally stable and can be isolated as enantiomers known as *atropisomers*.
