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He-atom scattering from MgO(100): calculating diffraction peak

intensities with a semi ab initio potential
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An efficient model describing the He-atom scattering process is presented. The He–surface

interaction potential is calculated from first principles by exploiting second-order

Rayleigh–Schrödinger many-body perturbation theory and fitted by using a variety of pairwise

interaction potentials. The attractive part of the fitted analytical form has been upscaled to

compensate the underestimation of the well depth for this system in the perturbation theory

description. The improved potential has been introduced in the close-coupling method to calculate

the diffraction pattern. Quantitative agreement between the computed and observed binding

energy and diffraction intensities for the He–MgO(100) system is achieved. It is expected that the

utility of He scattering for probing dynamical processes at surfaces will be significantly enhanced

by this quantitative description.

I. Introduction

An understanding of surface structure and dynamics underpins

all of surface science, heterogeneous catalysis, much of nano-

science, and the technologies based on them. In response to

this need the number of studies on oxide surfaces has increased

rapidly in recent years and progress has been summarised in a

number of articles.1–3 Despite very careful investigations and

optimized methods, inherent problems remain: oxides are

insulating materials, for which all methods using or producing

electrons are frequently hampered by artifacts due to charging

or due to damage produced by impinging electrons. In some

cases, the use of very low electron currents, nowadays available

in channel plate low-energy electron diffraction (LEED) systems,

reduces these artifacts.4 In other cases, for example ZnO or TiO2,

a conduction mechanism via defects facilitates the use of scanning

tunnelling microscopy (STM), LEED and other well-developed

standard techniques. Except for the cleavage faces of the rocksalt-

type oxides, MgO, NiO and CoO,5–8 on most oxide surfaces

usually a comparatively large defect density is present, which

decreases the reliability of methods which cannot distinguish

between a signal from well-ordered parts of the surface and a

signal from defective parts, like photoelectron spectroscopy

(XPS) or thermal desorption spectroscopy (TDS). He-atom

scattering is a technique which uses neutral particles of sub-

thermal energy (100 meV) and, therefore, is not complicated

by charging and damaging effects and is sensitive only to the

outermost layer; see ref. 9 and references therein.

Since the first diffraction He-atom scattering (HAS) experiment

in 1930 by Estermann and Stern10 on the (100) crystal face of

lithium fluoride, the scattering of He atoms from surfaces has

been widely used in solid state physics/chemistry to study and

characterize the surface atomic structure. However, it was not

until a third generation of nozzle beam sources was developed,

around 1980, that studies of surface phonons using helium

atom scattering were possible. These nozzle beam sources were

capable of producing helium atom beams with an energy resolution

of less than 1 meV, allowing explicit resolution of the very

small energy changes resulting from the inelastic collision of a

helium atom with the vibrational modes of a solid surface.

This extended HAS to the study of surface lattice dynamics.

The first measurement of such a surface phonon dispersion

curve was reported in 1981,11 leading to a renewed interest in

helium atom scattering applications, particularly for the study

of surface dynamics. The use of He-scattering has an important

limitation, namely, the difficulties involved in the quantitative

interpretation of the experimental diffraction patterns due to

the lack of a detailed understanding of the scattering potential

and process.

The quantitative analysis and correct interpretation of He-atom

experiments basically consists of two steps: determining the He–

surface interaction potential and then using dynamical quantum

mechanical methods to compute the diffraction intensities.

Empirical potentials modelling the He–surface interaction can

be inadequate as they may miss the essential physics; these
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potentials can only be used with confidence in a few well

understood systems, and therefore undermine both the generality

and accuracy of the structural determination.12,13 Removing

this limitation would have significant consequences for the

general applicability of the technique. A first-principle He–surface

interaction potential is difficult to obtain, because computer

codes based on density functional theory (DFT) or Hartree–

Fock (HF) include a poor treatment of long range weak

intermolecular interactions. It has been shown14 that a full

ab initio potential can be obtained by using second-order

Rayleigh–Schrödinger perturbation theory in the Møller–Plesset

partitioning (MP2), as implemented in the computer code

CRYSCOR,15,16 for the evaluation of post-HF effects in the

properties of periodic, non-conducting systems.

This study is aimed at developing an efficient model of the

He–surface interaction to provide a convenient and reliable

description of the He-atom scattering process. Firstly, the

quantum-mechanical calculation of the He–surface interaction

is based on exploiting second-orderMøller–Plesset perturbation

theory to approximate the correlation energy contribution to

the London dispersion interaction. Secondly, a pairwise

potential has been adopted to represent the He–surface inter-

action in order to separate repulsive and attractive contributions

to the interaction and to provide a convenient representation

for efficient close-coupling (CC) calculations.17–20 Finally, an

upscaling factor can be introduced for the attractive part of

the fitted potential that allows one to correct its underestima-

tion in the low-order perturbative approach. The objective of

this paper is to present the results of the fitting of the He–surface

interaction with the pairwise potential and the quantitative

comparison of diffraction peaks with the observed diffraction

intensities.

The paper is organised as follows: Sec. II contains compu-

tational details. In Sec. III the results for the He–MgO(100)

interaction potential fitting and the diffraction spectra are

presented and discussed. The main conclusions of this study

are summarised in Sec. IV and the analytical form of the

pairwise potential are documented in Appendix A.

II. Methodology and computational details

In order to study the He-atom scattering process the time-

independent Schrödinger equation has to be solved for all the

nuclei and electrons involved. The slow timescales associated

with nuclear motions, in comparison with the electron dynamics,

often allow us to assume the nuclear background to be static.

This is the so-called Born–Oppenheimer (BO) approximation,

which consists in two steps. In the first step the electronic

Schrödinger equation is solved, yielding the electronic wave

function with the nuclei fixed at particular configurations. This

electronic computation must be repeated for many different

nuclear configurations to produce a potential energy surface

or, as in the current case, analytic representation of the

He–MgO interaction potential. In the second step of the BO

approximation, this potential is included in a Schrödinger

equation containing only the nuclei, which must be solved

numerically to obtain the quantum dynamics. In what follows,

these two steps are explained in more detail.

A. Calculation of the He–MgO interaction potential

The interaction between He and the surface has been explored

by considering a set of configurations, where the distance between

the atom and the outermost layer has been varied in order

to obtain the He–MgO interaction potential (V(R, z), where

R = (x, y) and z is the direction perpendicular to the surface).

The MgO(100) surface is approximated as a rigid 2D periodic

3 atomic layer sheet cut from the bulk structure at the experi-

mental lattice constant (a= 4.211 Å).21 The description of the

He–MgO interaction is analysed by computing the binding

energy of an isolated He atom and the clean surface.22

Adsorption of the He atom has been considered over all the

MgO unit cell (200 points) with a separation in z between the

He atom and the outermost layer in the range: 3 Å–7 Å. A 2� 2

supercell of the primitive surface unit cell is found to be

sufficient to reduce the He–He lateral interactions to negligible

values. All calculations have been performed using the

CRYSTAL0923,24 and CRYSCOR0915,16 software packages,

both based on the expansion of the crystalline orbitals as a

linear combination of a local basis set (BS) consisting of atom

centred Gaussian orbitals (see ref. 14 for details).

B. Dynamics: the close-coupling (CC) method

The He-surface dynamics has been described as the elastic

scattering of structureless, non-penetrating particles off a

statically corrugated periodic solid surface. A detailed formalism

of the close-coupling method can be found e.g. in ref. 17; here

we briefly outline the main principles. The momentum of the

He particles is defined as k � (K, kz), where K is the projection

of the momentum vector parallel to the plane of surface and

kz is the perpendicular component. By the Bragg or diffraction

condition the parallel momentum conservation is given by

DK = Kf � Ki = G, where Kf and Ki are the final and initial

parallel momentum vectors, respectively, and G is a vector of the

2D reciprocal lattice associated with the periodic surface struc-

ture. The CC equations are derived25 from the time-independent

Schrödinger equation for a particle of mass m (in HAS, m is

the He atom mass) and momentum vector ki incident on a

potential V(r)

r2 þ k2i �
2m

�h2
VðrÞ

� �
CðrÞ ¼ 0 ð1Þ

(in units where �h2/2m = 1). Because of the surface periodicity,

the potential V(r) can be expressed as a Fourier series:

VðR; zÞ ¼ V0ðzÞ þ
X
Ga0

VGðzÞeiG�R ð2Þ

and the wave function can be also expanded as follows:25

CðrÞ ¼
X
G

cGðzÞeiðKþGÞ�R ð3Þ

VG(z) and CG(z) are the coefficients of a Fourier expansion of

the potential and the wave functions, V0(z) is the laterally and

thermally averaged interaction potential. After integrating
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over the area of a single surface unit cell, the CC equations

take the form:

d2

dz2
þ k2G;z � V0ðzÞ

� �
CGðzÞ ¼

X
G0aG

VG�G0 ðzÞCG0 ðzÞ ð4Þ

where

k2G,z = k2i � (Ki + G)2 (5)

gives the square of the momentum component oriented along

the z-direction, sometimes called ‘z-component kinetic energy’

of the G-diffracted wave or G-channel. In the CC formalism

two different types of diffraction channels are distinguished,

depending on the sign of the z-component kinetic energy

k2G,z in eqn (5): if k2G,z is positive, one has open or energetically

accessible channels, and if negative, the channels are closed or

energetically forbidden.

The close-coupling equations (4) are solved numerically by

using the Fox-Goodwin algorithm26 and subject to the usual

boundary conditions,25

where kGz = (�k2Gz)
1/2. The amplitude SG is related to the

observable diffraction probability or intensity IG = |SG|
2,

starting from the specular channel (G = 0). In order to take

into account the effect of the temperature, a Debye–Waller

factor, 2W, has been used,

2W ¼ 3�h2TSðkiz þ kfzÞ2

MkBY2
D

ð7Þ

with YD the Debye temperature, M the mass of a surface

atom, and kB the Boltzmann constant. The Beeby correction27

has been also included to take into account the aceleration due

to the attractive part of the potential, where the initial and

final wave vectors have been replaced by:

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

2mD

�h2

r
; ð8Þ

where D is the well depth and kz corresponds to kiz or kfz,

respectively. The observed intensity can then be compared

to ITG,

ITG = I0G exp(�2W), (9)

where ITG and I0G are the intensities at a T and zero surface

temperature, respectively.

III. Results

This section is divided in two parts. In the first, the fitting

of the He–MgO interaction potential to different pairwise

potential forms is analysed and the best fit model identified.

In the second, the diffraction pattern computed for the best fit

model is presented and compared with the measured He diffrac-

tion intensities along the [100] direction of the MgO(100)

surface.

A. Fitting

The calculated ab initio potential has been fitted, by minimising

the sum of squares using the program GULP,28 to different

pairwise potentials (whose analytical form and the corres-

ponding parameters are described in detail in Appendix A).

The sum of squares, which is a measure of the discrepancy

between the data and an the model potential, is defined as;

F ¼ 1

Npoints

XNpoints

i¼1
f
comp
i � f

pot
i

� �2
; ð10Þ

where Npoints is the number of computed ab initio energies,

fcomp
i and fpoti are the computed and empirical potential values,

respectively. The parameters for each potential have been

obtained by following the procedure described below. Firstly,

the fit has been performed considering only a O–He interaction

as this is expected to play the most important role in the

description of the He-surface potential. Secondly, the Mg–He

contribution has been included in the fitting calculation while

fixing the previously obtained O–He parameters. Finally, both

O–He and Mg–He parameters have been fitted simultaneously.

This procedure has been adopted as in the full parameter

space F has multiple local minima and the result of simple

unconstrained optimisation is strongly influenced by starting

conditions and subject to trapping in unphysical minima.

In Table 1 the fitted coefficients are reported for the pure

O–He fit and the fully unconstrained fit for a variety of

potential forms. In all the cases the contribution of the Mg–He

interaction is negligible when compared to that of the O–He

interaction as expected. It is interesting that for the Lennard-

Jones, Morse and Buckingham potential forms the values of

the O–He parameters are not affected significantly by the

introduction of the Mg–He interaction while for both General

forms (m = 1 and m = 2) the O–He short range potential is

affected and becomes somewhat steeper when including the

Mg–He interaction. F is improved when the He–Mg interaction

is introduced in all cases but that of the Morse potential. At

short range He–O repulsion dominates, the He–Mg contri-

bution is typically negligible. At long range the attractive

potential dominates and may contain both He–O and He–Mg

contributions. The short range nature of the attractive

component of the Morse potential precludes any substantial

contribution from the He–Mg interaction. As a result, the

parameters for the Morse potential, which are rounded to two

significant digits in Table 1, look identical. The negligible

contribution of the He–Mg interaction has been confirmed

cGðzÞ �!
z!0

0

cGðzÞ �!
z!1

k�1=2z expð�ikzzÞdG;0 þ k
�1=2
Gz SG expðikGzzÞ for open channels;

k1=2Gz SG expð�kGzzÞ for closed channels:

8<
:

ð6Þ
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as well in a recent paper where a pairwise additive model has

been used to describe the He–MgO interaction.3 It is notable

that the potential parameters are strongly correlated and so

the determination of a unique fit for a given ab initio potential

is extremely difficult to achieve.

The quality of the fit is assessed by comparing F of Table 1.

All the studied potentials provide a similar value for F

(0.17–0.29 meV2). The best fit has been obtained for the General

potential form (m = 2) followed in order of goodness of fit by

the General (m = 1), Morse, Buckingham and Lennard-Jones

forms. From Fig. 1 (and Fig. 2, where the reference HF+MP2

potentials are given), it is seen that the Lennard-Jones potential

is on average the best in the long range, but fails in the short

range due to the physically incorrect form of the repulsive

component. TheMorse potential performs somewhat oppositely.

The Buckingham and General potentials demonstrate similar

error patterns, with the General (m = 2) potential being on

average the best. Therefore, the latter has been employed in

Sec. III.B. The bound states of V0(z) for the modified potential,

calculated by using the Numerov algorithm,29 have been

found to be: E0 = �5.99 meV, E1 = �3.09 meV, E2 =

�1.38 meV, E3 = �0.51 meV and E4 = �0.13 meV, which are

in good agreement with the experimental values shown in the

literatute.6,30 The lowest level of �10.2 meV presented by

Table 1 Fitting parameters for the considered pairwise potential. For each form the first line refers to the fitting taking into account only the
He–O interaction, the second data row includes also the contribution of He–Mg

eHeO/meV sHeO/Å eHeMg/meV sHeMg/Å F/meV2

Lennard-Jones 3.4 � 10�1 4.4 0.50
3.4 � 10�1 4.3 5.8 � 10�2 4.4 0.29

DHeO/meV aHeO/Å
�2 rHeO/Å DHeMg/meV aHeMg/Å

�2 rHeMg/Å F/meV2

Morse 6.0 � 10�1 1.3 4.5 0.23
6.0 � 10�1 1.3 4.5 1.7 � 10�1 1.6 9.5 � 10�1 0.23

AHeO/meV Åm rHeO/Å CHeO/meV Å6 AHeMg/meV Åm rHeMg/Å CHeMg/meV Å6 F/meV2

Buckingham (General (m = 0)) 1.5 � 105 3.5 � 10�1 7.0 � 103 0.30
1.4 � 105 3.5 � 10�1 6.3 � 103 2.1 4.5 � 10�1 7.0 � 10�1 0.24

General (m = 1) 5.6 � 104 4.6 � 10�1 7.9 � 103 0.67
2.2 � 105 3.8 � 10�1 6.1 � 103 2.1 � 10�1 5.5 � 10�1 5.8 � 101 0.19

General (m = 2) 1.7 � 105 4.6 � 10�1 6.8 � 103 0.28
3.8 � 105 4.1 � 10�1 5.9 � 103 2.7 4.4 � 10�1 1.8 � 101 0.17

Fig. 1 Difference between the HF + MP2 data and the fitting with the following potential forms: Lennard-Jones (red long-dashed line), Morse

(green short-dashed line), Buckingham (blue dotted line), General m = 1 (pink dashed-dotted line), and General m = 2 (black solid line). Four

different positions of the He in theMgO unit cell have been considered: the x=0.0, y=0.0 position corresponds to the He on top of the O ion, the

position x = 1.48, y = 1.48 to the He on top of the Mg ion and the positions x = 0.0, y = 1.48 and x = 0.59, y = 0.59 to bridge positions inside

the unit cell (position coordinates in Å).
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Benedek et al.5,31 has not been found with our model potential.

It has to be noticed that many other experimental measurements

have failed in showing this level.6,32,33 Having obtained a

reliable fit for the interaction of He with the 3 atomic layers

slab the interaction with the surface is computed by using the

fit to extrapolate to infinite slab thickness. In practice a slab of

33 atomic layers produces an interaction within 1 meV of the

infinite limit.

B. The computed diffraction pattern

TheHe–surface interaction potential, which is crucial for calculating

the diffraction intensities, has been calculated previously with-

in the HF+MP2 level of theory in ref. 14. Despite the correct

qualitative description of the long range binding interaction,

the computed well depth is significantly smaller than observed.31,34

This behaviour has been documented for a number of inter-

molecular interactions and is generally assigned to an under-

estimation of the attractive dispersion interaction.35,36 Indeed,

the interaction between weakly polarizable systems (such as

the He atoms and MgO slab in our case) is known to be

noticeably underestimated by the MP2 method,14,37,38 in

contrast to highly polarizable ones, where MP2 notoriously

overbinds. In order to compensate for this deficiency, the

attractive part of the model potential can be upscaled to

improve the results while still taking advantage of the correct

shape of the curve obtained at the MP2 level. The upscaling

factor for the CHeO parameter (5.8902 eV Å6) has been varied

from 1.0 to 1.8. The values lower than 1.6 and higher than

1.7 yield a poor description of the diffraction peaks, when

compared to the experimental data. Hence a value of 1.65 has

been chosen for the upscaling factor, with which the diffrac-

tion intensities are in fact very well reproduced (vide infra).

Interestingly, this fitted upscaling parameter 1.65 is quite close

to the ratio between the CCSD(T) (aug-cc-pV(D/T)Z-extra-

polated) and MP2 (aug-cc-pVTZ) well depths for a test cluster

system He–Mg3Na2O4, found to be 1.88.14 However, this

agreement should be taken with a grain of salt, since, firstly,

the MP2 and CCSD(T) well depths correspond to slightly

different He–Mg distances and, secondly, they implicitly involve

the repulsive component of the interaction which was not

upscaled in our case.

In Fig. 3 the planar averaged potential, V0(z), has been

plotted for both the unmodified and modified potential for

which the well depths are 3.4 meV (red line) and 8.0 meV

(blue line), respectively. There is no firmly established obser-

vation of the well depth with values deduced fromHe-scattering

spectra being in the range 7.5 meV–12.5 meV.31,34,39 It has to be

noticed that the well depth presented here is the same as the one

obtained in ref. 39.

The expected long-range behaviour for a He atom interacting

with a continuum dielectric or with the surface via a set of

pairwise 1/r6 interactions is 1/z3 where z is the He–surface

separation.40 For both modified and unmodified potentials

V0(z) reproduces this 1/z3 trend at long range. At the same

time, as it is seen from Fig. 3, the upscaling of the attractive

component has a distinct effect on the position of the repulsive

wall, essential in the scattering process.

As it is not possible to take the infinite number of all

(open and closed) channels into account, the calculation needs

to be restricted to a finite number of G vectors. The number of

G vectors has been determined by checking the convergence of

the results with increasing number of channels included in the

calculation. The number of channels needed for convergence

usually depends on the incident energy Ei, but it is maintained

in this case to 49 for all the considered spectra. The closed channels

have to be taken into account in the calculation because the

often observed phenomenon of bound state resonances41 can

significantly affect the diffraction probabilities due to the

coupling of the open to the closed channels. The Fourier

components to be included in eqn (2) have been obtained

Fourier transforming both the modified and unmodified

potentials over the unit cell. The CC calculation has shown

that in order get a good description of the potential 9 terms

need to be included in the Fourier series. These terms are the

Fig. 2 HF + MP2 data for four different positions of the He in the

MgO unit cell. The x = 0.0, y = 0.0 position (black solid line)

corresponds to the He on top of the O ion, the position x = 1.48,

y = 1.48 (dashed-dotted blue line) to the He on top of the Mg ion

and the positions x = 0.0, y = 1.48 (dotted red line) and x = 0.59,

y = 0.59 (dashed green line) to bridge positions inside the unit cell

(position coordinates in Å).

Fig. 3 Comparison of the averaged potential V0(z) for CHeO =

5.8902 eV Å6 (red dashed line) and CHeO � 1.65 (blue solid line).

The x-axis corresponds to the perpendicular distance between the He

atom and the first layer of the slab.

D
ow

nl
oa

de
d 

by
 I

m
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

 o
n 

17
 J

ul
y 

20
11

Pu
bl

is
he

d 
on

 1
2 

Ju
ly

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1C
P2

12
12

E
View Online

http://dx.doi.org/10.1039/c1cp21212e


Phys. Chem. Chem. Phys. This journal is c the Owner Societies 2011

corresponding to G = 2p/a(n, m) with (n, m) = (0, 0), (�1, 0),
(0, �1), (�1, �1). This result proves that the corrugation

function cannot be expressed in the simple form:

x(x, y) = h(cos(2px/a) + cos(2py/a)), (11)

as it has been accepted.42 The corrugation function is commonly

defined within simple models in order to determine if the chosen

potential is able to describe the He–surface interaction. In our

case, the corrugation depends explicitly on the He–surface

distance. It is therefore not possible to define a realistic corruga-

tion function. In previous works,12,13 an effective corrugation

function (depending on the incident energy) has been calculated

by using DFT calculations. As it has been explained above DFT

calculations are not suitable to determine the attractive part of

the He–MgO interaction. Therefore these calculations has been

restricted to the repulsive part of the interaction potential.

In Fig. 4, the He–surface diffraction peaks, calculated with

the CC method, are shown for the unmodified (red stars)

and modified (blue circles) potentials. Both the experimental

peak intensity (black line) and the corresponding peak areas

(black squares)31 are shown, where the latter are a more reliable

representation of the peak intensity than the peak height as the

effects of diffraction peak broadening due to energy spread of

the He beam are taken into account. The effects of temperature on

the theoretical results have been included using a Debye–Waller

with a Debye temperature of 495 K43 determined by elastic

neutron scattering at a surface temperature of 300 K.

There is reasonable agreement between the calculated diffrac-

tion intensities and those observed for all six He incident

energies when the modified interaction potential is used; the

agreement when the unmodified potential is used (or the raw

HF + MP2 energy surface) is noticeably worse. From a

quantitative point of view, the deviation s of the CC calcula-

tions from the experimental diffraction peak areas has been

calculated using the formula

s ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n;m

jICCn;m � I expn;m j2
s

� 100; ð12Þ

for each diffraction pattern, where N is the total number of

experimentally observed diffraction channels, and ICCn,m and Iexpn,m

are the close-coupling and experimental peak areas for each

(n, m) channel, respectively. Eqn (12) gives an overall error

estimation for each diffraction pattern. In this type of analysis,

this quantity is much more convenient than using a relative

error for each diffraction intensity since it provides an estimate

of the overall quality of the global fitting. As it can be seen

from Table 2, the upscaled potential provides a substantially

better description of diffraction than the bare MP2-fitted one.

This result supports the conclusion that at the HF + MP2

level of theory the attractive component of the He–surface

Fig. 4 Comparison of the CC intensities for case 1 (red stars) and case 2 (blue circles) with the experimental spectra (black lines) and the

peak areas (black squares). Diffraction peaks are given in counts s�1; peak areas and CC intensities have been normalized in a way that the

specular (central) peak appears at the maximum of the experimental peak. The considered incident energies are the following: (a) Ei = 26.62 meV,

(b) Ei = 33.30 meV, (c) Ei = 40.02 meV, (d) Ei = 48.96 meV, (e) Ei = 50.20 meV and (f) Ei = 60.47 meV.

Table 2 The values of the deviations s of the CC calculations from
the experimental diffraction peak areas for the General (m = 2) and
upscaled attractive component potentials

Incident energy/meV

s/%

Scaling factor

1.0 1.65

26.62 12.2 1.4
33.30 11.8 2.7
40.02 24.7 2.3
48.96 29.6 4.9
50.20 21.1 3.4
60.47 37.7 14.0
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interaction, although described in a qualitatively correct way,

is substantially underestimated. More specifically, it manifests

in underestimation of the long-range dispersion and the depth

of the minimum as well as overestimation of the repulsiveness

in the short range. Increasing the attractive interaction in an

ad hoc manner corrects for all the three mentioned deficiences

including the short-range part, important for the high-energy

diffraction. The potential surface obtained within such a

treatment allows for considerably better agreement with

both the observed binding energy and diffraction intensities.

The significant changes in the diffraction peaks at high

incident energies is explained by the detectable influence of

the upscaling on the overall interaction at short-range as can

be seen in Fig. 3.

The new method is an alternative to the commonly used

Eikonal approximation or Corrugated Morse potential12,13

with the advantage of obtaining very accurate He–surface

interaction potentials that are independent of the incident

energy. The eikonal approximation, which uses a hard corrugated

wall, has been unsucessfully applied to study strongly corrugated

systems such as MgO7 obtaining agreement in the order of

magnitude of the diffraction intensities but not the required

precision. This approximation is expected to overestimate the

intensity when comparing to a more realistic corrugated well

potential with the correct 1/z3 behavior of the long-range Van

der Waals attraction.44 In the case of slightly more refined

methods such as the Corrugated Morse potential, there is still

the problem of the dependency of the corrugation function on

the incident energy and the lack of unicity, as different fitted

parameters can be able to present a good agreement with

the experimental data. In conclusion, the good agreement

obtained between the CC results and the experimental data

shows that in order to obtain an accurate description of the

He–MgO diffraction process a detailed study of both the short

and long range interaction is required.

IV. Conclusions

An efficient model describing the He-atom scattering process

has been presented. The He–surface interaction potential has

been calculated from first principles by exploiting second-

order Rayleigh–Schrödinger perturbation theory in the Møller–

Plesset partitioning and fitted by using a variety of pairwise

interaction potentials. Based on the fitted analytical form, the

intensity of the He-diffraction peaks has been calculated using

the close-coupling method. When the attractive component

of the potential is enhanced to allow for the underestimate of

the interaction implicit in the MP2 approach good agree-

ment between the computed and observed binding energy

and diffraction intensities for the He–MgO(100) system is

achieved.

As the surface interaction is dominated by the He–O

potential, in the future we plan to investigate if this potential

form is transferable to a wide variety of oxide surfaces and a

quantitative analysis of He-atom experiments can be achieved.

A further generalization of the described technique to fully

first-principle determination of the interaction potentials will

be presented in an upcoming contribution.

Appendix A: Appendix

The Lennard-Jones potential expressed in terms of pair inter-

action between helium and oxygen and between helium and

magnesium takes the form:

VðrHeÞ ¼
X
i

eHeO
rHeO

jrHe � rOi
j

� �12

�2 rHeO

jrHe � rOi
j

� �6
" #

þ

þ
X
j

eHeMg
rHeMg

jrHe � rMgj j

 !12

�2 rHeMg

jrHe � rMgj j

 !6
2
4

3
5

ðA1Þ

where eHeO and eHeMg are the well depths and rHeO and rHeMg

are the equilibrium distances between He and O and He and

Mg, respectively. The variables rHe, rO and rMg represent the

positions of the He, O and Mg, respectively.

In the same way the Morse potential when extending to the

interaction between He and MgO surface takes the form

VðrHeÞ ¼
X
i

DHeOf½1� exp�aHeOðjrHe�rOi
j�rHeOÞ�2 � 1g

þ
X
j

DHeMgf½1� exp
�aHeMgðjrHe�rMgj

j�rHeMgÞ�2 � 1g

ðA2Þ

where DHeO and DHeMg are the well depths and aHeO and

aHeMg the stiffness parameters of the He–O and He–Mg inter-

actions, respectively. The Buckingham and the General potential

have the same form when is expressed in terms of pair inter-

action between He and O, it follows:

VðrHeÞ ¼
X
i

AHeO exp
�
jrHe�rOi

j
rHeO

	 

1

jrHe � rOi
j

� �m
"

�CHeO
1

jrHe � rOi j

� �n�

þ
X
j

AHeMg exp
�
jrHe�rMgi

j
rHeMg

	 

1

jrHe � rMgj j

 !m"

�CHeMg
1

jrHe � rMgj j

 !n#

ðA3Þ

where AHeO and AHeMg are the repulsive coefficients and

CHeO and CHeMg the attractive ones of the He–O and He–Mg

interactions, respectively. It corresponds to the Buckingham

potential with m = 0, to the General (m = 1) and the General

(m = 2). In all the case the value of n in the attactive part is 6.
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