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CRYSTAL is an ab initio electronic structure program, based on the linear combination
of atomic orbitals, for periodic systems. This paper concerns the ability of CRYSTAL
to exploit massively parallel computer hardware. A brief review of the theory, numerical
implementations and parallel solutions will be given and some of the functionalities and
capabilities highlighted. Some features that are unique to CRYSTAL will be described
and development plans outlined.
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1. Introduction

The development and the application of new materials have played an important
role in the technologies that impact on our daily lives. The global challenges of
security, energy, climate change and health have further sharpened the focus
on materials research and technology. The application of high-performance
computing to materials chemistry problems is currently contributing significantly
to, for instance, the discovery and the development of solar absorbers, new
catalysts and hydrogen storage systems. The key relationship is between
composition, structure and desirable properties. In many cases, it is an
understanding of the electronic properties at an atomic and quantum mechanical
level that is vital. As the need has grown, the computer simulation of electronic
structure has developed in accuracy, reliability and scale. There is now a rapidly
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2 I. J. Bush et al.

growing number of cases where realistic models of important systems can be
simulated and the value of experimental measurements significantly enhanced by
direct comparison with ab initio theory. These developments can be attributed to
advances in the underlying theory, algorithmic developments and the exploitation
of high-performance computers.

The CRYSTAL package (Dovesi et al. 2009; http://www.crystal.unito.it) was
jointly developed by the Theoretical Chemistry Group at the University of Torino
and the Computational Materials Science group in the Daresbury and Rutherford
Appleton Laboratories of the Science and Technology Facilities Council (STFC).
The program performs ab initio calculations of the ground-state energy, energy
gradient, electronic wave function and properties of periodic systems. Hartree–
Fock or Kohn–Sham Hamiltonians, which describe the effects of electronic
exchange and correlation using a potential derived from density functional theory
(DFT) can be used (Kohn & Sham 1956; Hohenberg & Kohn 1964; Parr & Yang
1989). Systems periodic in zero (molecules, zero dimensional), one (polymers,
one dimensional), two (slabs, two dimensional) and three dimensions (crystals,
three dimensional) are treated on an equal footing. Symmetry is exploited and
CRYSTAL automatically implements the 230 space groups, 80 layer groups,
99 rod groups and 45 point symmetry groups. In the case of polymers, helical
symmetries can also be applied and exploited.

This paper, which is aimed at providing information about developments of
CRYSTAL that enable parallel computing of the energy and the wave function
of a periodic system, is organized as follows. In §2, we review briefly the
underlying theory: Hartree–Fock theory (§2a), DFT (§2b) and the numerical
implementation of the theories (§2c). In §3, we outline and compare parallelization
strategies adopted and implemented in the PCRYSTAL and MPPCRYSTAL
parallel versions of the program. In §4, the parallel scalability of MPPCRYSTAL
is demonstrated, and a brief outline of recent and ongoing developments of
CRYSTAL are discussed in §5. Finally, conclusions are made in §6.

2. Theoretical background

(a) Hartree–Fock theory

The electronic Hamiltonian operator, Ĥ , consists of a sum of three terms: the
kinetic energy, the interaction with the external potential (Vext) and the electron–
electron interaction (Vee). That is (in atomic units)

Ĥ = −1
2

N∑
i=1

V2
i + V̂ ext +

N∑
i=1

N∑
j>i

1
|ri − rj | . (2.1)

In materials simulation, the external potential of interest is generally the
interaction of the electrons with the atomic nuclei

V̂ ext = −
N∑

i=1

Nat∑
a=1

Za

|ri − Ra| . (2.2)
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ab initio CRYSTAL program 3

Here, ri is the coordinate of electron i and the charge on the nucleus at Ra is
Za. Note that in order to simplify the notation and to focus the discussion on
the main features of DFT the spin coordinate is omitted here and throughout
this paper.

In Hartree–Fock theory (Szabo & Ostlund 1982; Harrison 2003), the ground
state is found by minimizing the total energy of the system with respect
to a set of N normalized spin orbitals ji . This leads to the Hartree–Fock
(or self-consistent field (SCF)) equations[

−1
2

V2
1 −

Nat∑
a=1

Za

|r1 − Ra| +
∫

r(r2)
|r1 − r2|dr2

]
fi(r1) +

∫
nx(r1, r2)fi(r2)dr2 = eifi(r1),

(2.3)
where nx(r1, r2) is the non-local exchange potential. Equation (2.3) can also be
written as F̂ |fi〉 = ei|fi〉, where F̂ is the Fock operator.

(b) Density functional theory

Hartree–Fock theory describes non-interacting electrons in a mean field
potential consisting of a classical Coulomb potential and a non-local exchange
potential. Electron correlation is, however, neglected. DFT provides an improved
approach for including the effect of electron correlation (Parr & Yang 1989;
Martin 2004)[

−1
2

V2
1 −

Nat∑
a=1

Za

|r1 − Ra| +
∫

r(r2)
|r1 − r2|dr2

]
fi(r1) +

∫
nxc(r1)fi(r2) dr2 = eifi(r1),

(2.4)
where nxc(r) = dExc/dr is a local multiplicative potential that is the functional
derivative of the exchange correlation energy with respect to the density.

The DFT energy can be written as the sum of the kinetic energy, the
classical Coulomb interaction, the electron–nucleus interaction and an exchange
correlation term, Exc. This later term, Exc, is the sum of the errors in the
approximations made in assuming a non-interacting kinetic energy term and in
treating the electron–electron interaction classically.

Studies of the homogenous electron gas suggest that Exc can be described in
terms of the local electron density; several different functionals exist that exploit
this property and they are known collectively as local density approximations
(LDAs). The LDA can be improved upon by also considering the first derivatives
of the density, and functionals that use this are known as generalized gradient
approximations (GGAs). The combination of non-local Fock exchange and
density functionals was first proposed by Becke in the B3LYP hybrid functional
that mixes 20 per cent Fock exchange with a GGA exchange functional
(Becke 1988, 1993a,b).

The energy functional and matrix elements of the exchange and correlation
potentials are not analytical functions of the Gaussian basis set and are therefore
integrated numerically on an atom centred grid of points. The integration over
radial and angular coordinates is performed using Gauss–Legendre and Lebedev
schemes, respectively.
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4 I. J. Bush et al.

In general, bond enthalpies are significantly better described when using the
GGA than when using either the Hartree–Fock theory or the LDA. Hybrid
exchange functionals partially correct for electronic self-interaction and therefore
generally further improve the description of bond enthalpies and vibrational
frequencies. The hybrid exchange approach also produces single particle band
gaps for a variety of semiconductors, simple oxides and transition metal oxides
more reliably than Hartree–Fock, LDA or GGA theories (Muscat et al. 2001;
Tomić et al. 2008).

(c) Numerical implementation in CRYSTAL

In CRYSTAL, the crystalline orbitals, ji(r; k), are expanded as a linear
combination of Bloch functions, fm(r; k), which are themselves expressed as linear
combinations of atom centred atomic orbitals, 4m(r),

ji(r; k) =
∑

m

am,i(k)fm(r; k) (2.5)

and

fm(r; k) =
∑

g

4m(r − Am − g) eik·g, (2.6)

where Am denotes the coordinate of the nucleus in the zero reference cell on which
4m is centred, and the

∑
g is extended to the set of all lattice vectors g.

Each atomic orbital is expressed as a linear combination of individually
normalized Gaussian type functions (GTFs), with fixed coefficients dj and
exponents, aj ,

4m(r − Am − g) =
nG∑
j

djG(aj ; r − Am − g). (2.7)

The collection of all atomic orbitals is referred to as the basis set. The expansion
coefficients of the Bloch functions, am,i(k), are calculated by solving the matrix
equation for each reciprocal lattice vector, k,

F(k)A(k) = S(k)A(k)E(k), (2.8)

in which S(k) is the overlap matrix over the Bloch functions, E(k) is the diagonal
energy matrix and F(k) is the Fock matrix in reciprocal space,

F(k) =
∑

g

Fg eik·g. (2.9)

The matrix elements of Fg, the Fock matrix in direct space, can be written
as a sum of one-electron and two-electron contributions in the basis set of the
atomic orbitals,

F g
ij = H g

ij + Bg
ij . (2.10)
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ab initio CRYSTAL program 5

The one-electron contribution is the sum of the kinetic and nuclear
attraction terms,

H g
ij = T g

ij + Z g
ij = 〈40

i | T̂ | 4
g
j 〉 + 〈40

i | Ẑ | 4
g
j 〉 =

〈
40

i | −1
2

V2 | 4
g
j

〉

+
〈

40
i |

Nat∑
a=1

−Za

|ri − Ra| | 4
g
j

〉
. (2.11)

In core pseudopotential calculations, Ẑ includes the sum of the atomic pseudo-
potentials. The two-electron term is the sum of two contributions,

Bg
ij = C g

ij + X g
ij ,

where C g
ij is the Coulomb term given by

C g
ij =

∑
k,l

∑
n

Pn
k,l

∑
h

(40
i 4

g
j | 4h

k4h+n
l ), (2.12)

with

(40
i 4

g
j | 4h

k4h+n
l ) =

∫
40

i (r1)4
g
j (r1)

1
|r1 − r2|4

h
k(r2)4h+n

l (r2) dr1 dr2. (2.13)

The term X g
ij is the exchange contribution in the Hartree–Fock method, calculated

as follows:

X g
ij = −1

2

∑
k,l

∑
n

Pn
k,l

∑
h

(40
i 4h

k | 4
g
j 4h+n

l ), (2.14)

while X g
ij is the exchange and correlation contribution in DFT, obtained by

integrating the exchange-correlation potential nxc(r), see equation (2.4).
The Coulomb interactions, that is, those of electron–nucleus, electron–electron

and nucleus–nucleus, are individually divergent, owing to the infinite size of the
system. The grouping of corresponding terms is necessary in order to eliminate
this divergence.

The Pn density matrix elements in the atomic orbitals basis set are computed
by integration over the volume of the Brillouin zone,

Pn
k,l = 2

∫
BZ

dk eik·n ∑
m

a∗
k,m(k)al ,m(k)q[eF − em(k)], (2.15)

where ai,m denotes the ith component of the mth eigenvector, q is the step
function, eF is the Fermi energy and en is the nth eigenvalue. The total electronic
energy per unit cell is given by

Etot = 1
2

∑
i,j

∑
g

Pg
ij(H

g
ij + F g

ij). (2.16)
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6 I. J. Bush et al.

3. Parallel implementation in CRYSTAL

The algorithm used to determine the ground-state electron density and energy
in CRYSTAL is similar to that used in other local orbital programs (Soler et al.
2002; Guest et al. 2005; http://www.gaussian.com; http://www.molpro.net/) and
can be briefly summarized as follows.

Given an initial density matrix, Pg.

(1) Calculate analytically the kinetic, Coulombic and, if necessary, the
exact exchange contributions to the Fock matrix in the atomic orbital
representation, Fg.

(2) If required, calculate by quadrature the DFT exchange and correlation
contributions to Fg.

(3) Transform Fg into reciprocal space in its crystalline orbital representation
F(k). This is done in two steps: first by a Fourier transform and then by a
similarity transform.

(4) At each k point, diagonalize F(k).
(5) Using the eigenvalues from step 4, calculate the Fermi level, and hence the

occupation numbers of each orbital at each k point.
(6) Sum over the occupied eigenvectors to construct a new density matrix, Pg.
(7) Repeat steps 1 to 6 until convergence of the total energy.

A parallel algorithm has been implemented for each of the steps (1–6) with the
exception of step 5, which is not computationally demanding.

A replicated data approach is easily implemented. In step 1, the evaluation of
each element of the Fock matrix is an independent task involving large numbers
of analytical integrals. In step 2, the quadrature on a grid is a classic example of
data parallelism as each central processing unit (CPU) can evaluate the integral
on different parts of the grid. Finally, the transformation and diagonalization of
F(k) can be performed at each k point independently and after communication
of the eigenvalues for the determination of the Fermi level, the contribution of
orbitals at each k point to Pg is also an independent calculation. A parallel version
of CRYSTAL (PCRYSTAL) based on this approach was first released in 1996.

PCRYSTAL uses a replicated data paradigm; all CPUs have access to a
complete copy of all the objects required, but each CPU will be performing
different calculations at any instant. The replication of data leads to a fairly
straightforward parallelism. The terms evaluated analytically (step 1) may simply
be farmed out across the CPUs. There is a potential load balance problem when
doing this, as each term will take a different amount of time to compute. However,
in practice, this is not usually a problem, as typically there are a very large
number of terms to compute compared with the number of CPUs, and a simple
static load balancing procedure is sufficient to achieve good parallel scaling.
This parallelization method has also been implemented in several other quantum
chemistry programmes (Guest et al. 2005; http://www.gaussian.com).

The evaluation of the quadrature (step 2) is a little more complex. In
CRYSTAL, the unit cell is divided into a number of parallelepipeds, and the
quadrature within each of these parallelepipeds is evaluated independently and
can be conducted in parallel. However, unlike the analytical terms, the number
of parallelepipeds is often of a similar order of magnitude to the number of
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ab initio CRYSTAL program 7

CPUs. Hence, load balance is a problem, as each parallelepiped may contain
a different number of grid points, and may contribute to different numbers of
matrix elements. PCRYSTAL, therefore, dynamically load balances this part of
the calculation by measuring the time taken to perform each of the quadratures
and assigning the parallelepipeds to the CPUs appropriately. For the first cycle,
it is reasonable to assume that the time required for a given parallelepiped is
proportional to the number of grid points it contains.

For the calculations in reciprocal space, i.e. the Fourier and similarity
transforms (step 3), the diagonalization of F(k) (step 4) and the construction
of Pg (step 6), PCRYSTAL exploits the independence of the k points. Each CPU
is assigned a subset of k points, and performs the calculation on that subset
constructing a partial Pg. In unrestricted calculations, the independence of the
spin states is also exploited. The only synchronization point is the evaluation of
the Fermi level and the global summation of the partial Pg.

The resulting code is simple and for many cases performs very well. However,
it does have a number of limitations.

(1) The parallelism in reciprocal space is limited by the number of k points.
As the system size increases the number of k points required decreases;
very large systems can be accurately described using just one k point.

(2) The maximum size of a calculation may be limited by the amount of
the memory available. As all the data are replicated, the largest system
that can be addressed by PCRYSTAL is no larger than that which serial
CRYSTAL can address. In an era, where the amount of memory per CPU
is falling, this is a particularly serious problem.

(3) In principle, the costs of re-replicating the data at each stage could become
important as the cost of the procedure grows with the number of CPUs.
While this is important for other codes, in practice, in PCRYSTAL, each
stage is sufficiently expensive that these costs are negligible.

Limitation 1 results in PCRYSTAL typically only scaling to a few 10 s of CPUs,
with most calculations becoming impractical owing to runtime before limitation 2
is reached.

To address these problems, a new massively parallel version of PCRYSTAL
has been developed, MPPCRYSTAL. The main change from PCRYSTAL is that
all large objects are distributed. In particular, all the large reciprocal space
matrices are distributed and operated on in parallel. For this, the ScaLAPACK
library is used, and thus a block cyclic distribution of the data is implemented
(http://www.netlib.org/scalapack; http://www.mpi-forum.org).

Thus in MPPCRYSTAL, for the reciprocal space part of the calculation, a
hierarchical parallelism is used; first the independence of the k points is exploited,
and then for each k point, a number of CPUs perform the calculation in parallel by
using the ScaLAPACK library. This addresses both the major limitations noted
above, and MPPCRYSTAL can: (i) scale to 1000 s of CPUs and (ii) address much
larger problems than either CRYSTAL or PCRYSTAL. For instance, it has been
shown to be able to perform SCF iterations at over 40 000 basis functions.

But what of the evaluation of Fg in MPPCRYSTAL? With one major
exception, this is performed in almost the same manner as PCRYSTAL, i.e. Fg

and Pg are replicated. This is not nearly as large an overhead as one might think,
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8 I. J. Bush et al.

as in CRYSTAL, both these objects are stored in sparse format, and thus are very
much smaller than the dense matrix representations used for the reciprocal space
objects. However, ultimately, this is a potential problem, and we shall return to
this later. The major exception is the grid used by DFT calculations, which
is distributed owing to its memory requirement; as each CPU only performs
quadratures across a small portion of the grid it only holds those parts of the
grid that it needs.

The resulting code is, as stated above, much more scalable in terms of both time
and memory than PCRYSTAL, and may exploit many more CPUs to perform
calculations on much larger systems. In fact, benchmarks on a number of systems
suggest that a very rough estimate of the number of CPUs to which the code can
scale reasonably efficiently is given by

Nk × Ns × Nb

30
, (3.1)

where Nk is the number of k points, Ns the number of spins and Nb the number
of basis functions. Thus, very roughly one might expect an MPPCRYSTAL
calculation using 10 k points and 3000 basis functions to run efficiently on up
to around 1000 CPUs.

It is worth stressing the memory usage of the algorithm discussed above, as
effective and efficient memory usage is becoming much more important on modern
high-performance computers. In fact, it is worth noting that the massively parallel
processing code can optionally use algorithms that are less time efficient but more
memory efficient than PCRYSTAL precisely because it is designed to handle
large systems where memory considerations are paramount. If these low-memory
options (controlled by the new LOWMEM directive) are exploited, MPPCRYSTAL
uses no replicated objects that scale with the square of the system size. The
required total memory is reduced by: (i) storing only the symmetry irreducible
form of the density matrix and computing elements of the reducible form as
required, (ii) optimizing the storage of tables that index the analytic Coulomb
and exchange integrals, and (iii) distributing the matrices associated with the
symmetrized directions.

This optimization has proved important for phase 2 of HECTOR, which
consists of nodes with a total of 8 GB of memory and four CPUs, that is just
2 GB memory per CPU; it was previously not possible to use all the CPU per
node when running large systems on HECTOR.

The current major limitations of MPPCRYSTAL are the following.

— The time to solution of the ScaLAPACK diagonalizer does not
scale well with CPU count. This has been somewhat helped by
the introduction of the faster routines (PDSYEVD and PZHEEVD) in
ScaLAPACK v. 1.7 (see http://www.cse.scitech.ac.uk/arc/diags.shtml;
http://www.hector.ac.uk/cse/distributedcse/reports/castep/castep_
performance_xt/4_Distributed_Diagonaliser_.html), but it is still an
issue, and this is the ultimate limitation in the scaling of the time to
solution of MPPCRYSTAL.

— As noted above, Fg and Pg are still replicated. While these are much smaller
than the equivalent reciprocal space objects, they are still a significant size,
and it is these that limit the size of calculation that can be performed.

Work is in progress to address both of these issues.
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4. Demonstration of the scalability of CRYSTAL

The massively parallel implementation of CRYSTAL allows systems with
approximately 1000 atoms per unit cell to be studied routinely on parallel
computers. The two key computational steps are the evaluation of the Fock
matrix through the calculation of matrix element integrals and the solution of the
Kohn–Sham equations through diagonalization of the Fock matrix. The parallel
capability of CRYSTAL will be demonstrated with three examples of calculations
on the UK’s national supercomputer, HECTOR. It has to be noted that, with
regards to the analytical gradient calculation, the dominant component is also
the evaluation of a set of bi-electronic integrals and integrals over the derived
DFT potential in a manner highly analogous the integrals for the potential and
energy expression; the scaling is, therefore, very similar and is not reported.

The first system is an 864 atom supercell of zincblende GaSb with 6 Sb atoms
randomly substituted by N atoms producing a Ga432Sb426N6 cell with no spatial
symmetry. Ga, Sb and N are described using triple valence basis sets yielding
19 836 atomic orbitals per cell—this is the rank of the Fock matrix. The Fock
matrix is diagonalized at two symmetry independent k points.

In figure 1, the scalability of one SCF cycle is presented and separated into
its two major components: calculation of the two-electron integrals (SHELLX)
and diagonalization of the Fock matrix (MPP_DIAG). The overall speed-up of
an SCF cycle is 3.3 when comparing runs on 896 and 3584 CPUs (the ideal
speed-up is 4). The parallel scaling of the integral calculation is near ideal, 3.82,
while the diagonalization step scales reasonably well up to 1792 CPUs but not to
3584 CPUs; this is as expected from the rough estimation of scalability given by
equation (3.1). Although the diagonalization is responsible for a small fraction
of the total runtime, it is clear that the scaling of the diagonalization ultimately
limits the parallel scaling of the calculation.

The diagonalization is performed within the ScaLAPACK library using a divide
and conquer algorithm (using the DCDIAG directive in MPPCRYSTAL) and is
sensitive to the block size used to distribute the matrix over the CPUs. This is
illustrated in figure 2; reducing the block size (using the MPPBLOCK directive)
from the default value of 96 to 64 or 32 results in a speed-up of around 10 per
cent in the diagonalization and about 20 per cent speed-up in the total time for
similarity transform followed by diagonalization and back transform. The optimal
value of the block size is machine dependent.

The second example is a TiO2 (3 × 3 × 3) supercell consisting of 648 atoms with
13 608 atomic orbitals. There are 16 symmetry operators that are exploited in the
calculation of the two-electron integrals. In figure 3, the total runtime for a single
SCF cycle and the contributions from SHELLX and MPP_DIAG are displayed for
cases where a single k point and 8 k points are used. Comparing this system to the
low-symmetry Ga432Sb426N6 system, the integral calculation in SHELLX is almost
two orders of magnitude faster, while the diagonalization is only marginally faster.
The parallel scaling of the integral calculation is again near ideal, while the
diagonalization at a single k point scales to only 256 CPUs. Exploiting parallelism
over 8 k points significantly increases the number of CPUs that can be used
effectively in MPP_DIAG to around 4096. This observed scalability is similar to
that estimated by equation (3.1). It is slightly lower than expected for the case
where there is only one (real) k point. This is, in part, because the estimate given
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Figure 1. Scalability of the major components in the total energy minimization procedure using
MPPCRYSTAL code on the Ga432Sb426N6 system consisting of 19 836 atomic orbitals. The total
time is given for the calculation of (a) one SCF cycle, (b) the two-electron integrals (SHELLX)
and (c) the diagonalization of the Fock matrix (MPP_DIAG). The dashed line is the ideal scaling.
(Online version in colour.)
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Figure 2. Dependence of the Fock matrix diagonalization (diag.) step on the block size (MPPBLOCK)
of the matrix parallel distribution. The default value of MPPBLOCK is 96. Number of CPUs = 3584.

by equation (3.1) assumes a mixture of both real and complex k points. Complex
k points require around three times more computation time than real k points;
this characteristic is exploited in MPPCRYSTAL. Consequently, systems that
have complex k points generally scale to larger numbers of CPUs than those that
only have real k points.

The third example is a TiO2 (5 × 4 × 4) supercell with a single Fe dopant,
consisting of 1920 atoms with 40 320 atomic orbitals. The calculations are
performed on the HECTOR phase 2b machine at the unrestricted Hartree–
Fock level of theory, with one symmetry operator. In figure 4, the total runtime
for a single SCF cycle and the contributions from SHELLX and MPP_DIAG are
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Figure 3. Scalability of the major component in the total energy minimization procedure using the
MPPCRYSTAL code on the TiO2 (3 × 3 × 3) supercell consisting of 13 608 atomic orbitals. The
total time is given for the calculation of (a) one SCF cycle, (b) the two-electron integrals (SHELLX)
and (c) the diagonalization of the Fock matrix (MPP_DIAG). The dashed line is the ideal scaling.
(Online version in colour.)

displayed for cases where a single k point is used. Comparing this system to the
second example with one k point, the integral calculation in SHELLX maintains
perfect scalability over the whole range of CPUs considered, while now scaling
of the Fock matrix diagonalization step MPP_DIAG, is dramatically improved.
Although in this example, we have considered only the real k point, improved
scalability in this part is basically owing to the much larger rank of the Fock
matrix (40 320 versus 13 608), which increases the work load per CPU relative to
the communication costs.

These three examples have been chosen as they are typical of the work
undertaken on HECTOR by members of the Materials Chemistry Consortium
and confirm the expected parallel scalability of MPPCRYSTAL estimated in
equation (3.1).

5. Developments of CRYSTAL relevant to parallel scaling

Currently, the major ongoing development of CRYSTAL is to include density
functional perturbation theory for response properties and time-dependent DFT
(TD-DFT) for calculating excited states. Details of this development and its
parallel implementation are given in §5a.
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Figure 4. Scalability of the major component in the total energy minimization procedure using the
MPPCRYSTAL code on the TiO2 (5 × 4 × 4) supercell consisting of 40 320 atomic orbitals. The
total time is given for the calculation of (a) one SCF cycle, (b) the two-electron integrals (SHELLX)
and (c) the diagonalization of the Fock matrix (MPP_DIAG). The dashed line is the ideal scaling.
(Online version in colour.)

In addition, several other relevant developments have recently been
made or are currently in progress. An interface to WANT for computing
electronic transport in nanostructures will soon be available and will
exploit the ability of MPPCRYSTAL to describe systems of 1000+ atoms
(http://www.wannier-transport.org). The nudged elastic band (NEB) method
for transition state searches has recently been implemented (Bailey et al. 2005).
This method exploits the task-farming parallelism in MPPCRYSTAL whereby
multiple energy evaluations are performed simultaneously and independently.
This division of labour is conceptually simple and efficient, requiring minimal
communication. Furthermore, an individual energy evaluation can be parallelized
as described in §3.

For large-scale parallel geometry optimization, an interface between the
DL-FIND library (Kastner et al. 2009) and CRYSTAL has recently been
implemented. DL-FIND is open-source code written primarily at STFC
Daresbury Laboratory and is available from CCPFORGE (http://ccpforge.cse.rl.
ac.uk). A wide range of algorithms for local and global minimization, as well
as transition state searching, are available via the library interface. The non-
sequential optimization methods, i.e. those involving multiple configurations at
each iteration, such as the stochastic searches, exploit the task-farming parallelism
in CRYSTAL. Consequently, this hierarchical approach will enable efficient
calculations on 10 000 s of CPUs.

(a) Dielectric properties and excited states

The calculation of the many-body dynamical polarizability and
hyperpolarizability tensors is available in the latest release of CRYSTAL
(CRYSTAL09). The calculation is based on the self-consistent solution of a
set of coupled-perturbed equations, derived within the linear or quadratic
response approximations of perturbation theory. This method is well known in
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molecular physics, (Hurst et al. 1988), and can be implemented at the Hartree–
Fock, DFT or hybrid-DFT levels of theory. Its extension to periodic crystalline
systems in CRYSTAL09 relies on an analytical representation of the k-dependent
position operator for extended systems, which allows us to achieve consistent
levels of accuracy across wide ranges of material structures and compositions
(Ferrero et al. 2008).

Solution of the coupled-perturbed equations at a frequency ±u yields a set of
unitary matrices U k,a

±u , where the superscript a indicates a Cartesian direction,
which transform the unperturbed one-particle orbitals into their linear-response
orbitals. Equivalently, a linear density-matrix response Dk,a

±u can be defined in
terms of the matrices U k,a

±u . The many-body dynamical polarizability tensor
a(±u) is then given by

aab(±uI ) = −2
Nk∑
k

wk

N∑
i

Nocc∑
j

[U k,a
±uI

]jiUk,b
ij + U

k,b
ji [U k,a

±uI
]ij , (5.1)

where the subscript a and b indicate Cartesian components, and i and j are band
indices. The polarizability is related to the dielectric tensor e(±u) by

eab(±u) = dab + 4p

V
aab(±u), (5.2)

where V is the cell volume. Optically allowed many-body electronic excitation
energies can be computed from the poles of the mean dynamical polarizability

ā(±u) = 1
3

tr a(±u) (5.3)

by examining the behaviour of this quantity within a given range of frequencies.
In the hybrid-DFT approximation (B3LYP), the quality of this method is
sufficient to yield optical gaps within 0.1 eV of experimental estimates for
several semiconductors and oxides (Bernasconi et al. submitted), including those
exhibiting (bound) exciton transitions. In the CRYSTAL09 implementation, this
method scales linearly with the number of k points included in the sampling of
the Brillouin zone. This approach is typically appropriate for studying the lowest
energy excitations of an extended quantum system.

The coupled-perturbed method can be extended to provide a general formalism
for computing electronic excitation energies and transition probabilities, which
does not involve the self-consistent solution of a set of coupled equations.
This is the so-called random phase approximation matrix formalism, (Hirata
et al. 1999), in which excitation energies correspond to the eigenvalues of a (in
general non-Hermitian) coupling matrix. Transition probabilities are related to
the eigenvectors of the coupling matrix. The coupling matrix is expressed in terms
of super-operators A and B, which couple single-particle excitations via a local
(DFT) or non-local (Hartree–Fock and hybrid-DFT) two-electron response term
(Hirata et al. 1999). In CRYSTAL09, A and B are represented in crystal-orbital
basis to yield the eigenvalue equation(

A B
B A

) (
X
Y

)
= u

(
1 0
0 −1

) (
X
Y

)
, (5.4)
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where A and B are (Nocc × Nvir)2 matrices (Nocc/Nvir being the number
of occupied/virtual one-particle states) and X/Y are left/right eigenvectors.
Depending on the form of the matrices A and B, equation (5.4) corresponds to
either TD-DFT, time-dependent Hartree–Fock, or hybrid TD-DFT. A and B can
also be simplified to yield approximate forms of these theories, the Tamm–Dancoff
approximation (Hirata & Head-Gordon 1999) to TD-DFT and the configuration
interaction singles method. Equation (5.4) can be solved either by direct
diagonalization, or via an iterative Davidson-like method. Calculation of matrix-
vector products (exploiting possible sparsities in the matrices and/or Davidson
guess vectors, which may arise in the crystal-orbital representation of A and B)
is carried out by means of a non-self-consistent coupled-perturbed calculation,
similar to the molecular approach of Bauernschmitt & Ahlrichs (1996).

These perturbation methods can explicitly exploit task farming in frequency
scans and will also exploit parallelism for matrix operations and linear algebra
using similar techniques to those implemented in the current version of
MPPCRYSTAL and described in §3.

6. Conclusions

An overview of the CRYSTAL code has been given, with particular emphasis
on the adaptation of key algorithms for the exploitation of parallel computer
hardware. It has been demonstrated that CRYSTAL can scale up to
thousands of CPUs for systems consisting of several hundred atoms and 10–20
thousand atomic orbitals. Recent developments have reduced the total memory
required to run large CRYSTAL calculations. This has enabled CRYSTAL
to run efficiently on the UK’s national supercomputer, HECTOR. Future
developments include TD-DFT for calculating excited states and an interface to
WANT (http://www.wannier-transport.org) for computing electronic transport
in nanostructures.
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