2

Comment on "2D Atomic Mapping of Oxidation States in Transition Metal Oxides by Scanning Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy"

Tan *et al.* [1] communicated experimental evidence for local differences of the electronic structure near crystallographically distinct transition metal sites in Mn_3O_4 using spatially resolved electron energy-loss spectroscopy (EELS). They interpreted the EEL spectra of Mn^{2+} and Mn^{3+} sites in terms of the Mn $L_{2,3}$ edge and found that the spectrum of Mn^{2+} did not match that from the reference compound (MnO). They attributed this discrepancy solely to signal intermixing, disregarding contributions from the difference in coordination [octahedral (O_h) versus tetrahedral (T_d)].

To verify the proposed invariance with coordination, we analyzed the electronic structure of the relevant compounds (Fig. 1) by using hybrid-exchange density functional theory. The adopted Becke three-parameter Lee-Yang-Parr (B3LYP) functional (as implemented in CRYSTAL09 [2,3]) produces band gaps and band widths in agreement with optical spectra [4] and shows quantitative agreement between calculated and experimental formation energies for these Mn oxides [5]. The EEL spectrum is approximated by the projected single-particle density of states, where the L_3 edge corresponds to the on-site transition between the Mn 2p and vacant Mn 3d orbitals. Considering the experimental resolution [1], a Gaussian function of width 0.4 eV is used to broaden the theoretical spectra. The calculated L_3 peaks (left-hand panel in Fig. 1) for Mn^{3+} in Mn_3O_4 and Mn_2O_3 match reasonably well, although the Mn₂O₃ feature is broader. The calculated Mn²⁺ peaks in Mn₃O₄ and MnO also agree except for the presence of a larger shoulder at higher binding energy in Mn₃O₄. This shoulder is rationalized by Tan et al. to be due to intermixing, with 22% of the Mn³⁺ signal being present on the Mn²⁺ site. A simple model for delocalization, $d_E = 0.5 \lambda / \theta_E^{3/4}$ [6,7], suggests a limit of 1.4 Å for the experiment in [1]. This is equal to the distance between the two sites; thus, intermixing is not expected to be pronounced. Additionally, the increase in intensity of the shoulder from the reference Mn²⁺ signal in the measured spectra is far greater than the proposed 22% intermixing (Fig. 2 in [1] suggests 50% of the Mn^{3+} signal).

An alternative explanation of the Mn_3O_4 L_3 edge is based on the effect of O_h versus T_d coordination on the Mn 3d states. This can be understood by projecting the calculated spectra onto the symmetry distinct Mn^{2+} 3d states (right-hand panel of Fig. 1). MnFe₂O₄ is also included here to provide an additional reference for T_d coordinated Mn^{2+} . It is apparent that in moving from O_h to T_d coordination, there is a significant reduction in the intensity of peak *a*. Peak *c* becomes more intense in Mn₃O₄, while also being shifted to a higher binding energy in T_d coordination. This occurs primarily due to

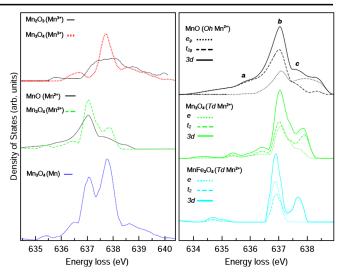


FIG. 1 (color online). Calculated EEL spectra (L_3) for Mn²⁺ and Mn³⁺. The spectra in the right-hand panel are scaled to have equal peak *b* intensities to aid comparison.

crystal-field splitting, the t_2 (T_d) states being at higher binding energy than the t_{2g} (O_h) states. Comparing the measured spectra of MnO [8], Mn₃O₄ [1], and MnFe₂O₄ [8], similar changes in peaks *a* and *c* are observed. It is notable that the increase in intensity of peak *c* in Mn₃O₄ [1] is much larger than that observed in MnFe₂O₄ [8], even though both peaks are from T_d -coordinated Mn²⁺. This is in fact predicted in the calculations where the increase of peak *c* intensity in Mn₃O₄ is significantly greater (20%). It is apparent that this is due to the combined contribution of *e* and t_2 states to peak *c* in Mn₃O₄, whereas in MnFe₂O₄ only the t_2 states contribute. This confirms that small changes in local environments have a measurable effect on the L_3 edge.

To summarize, the calculations presented here suggest a non-negligible contribution from local coordination to the observed electron energy-loss near edge structure (ELNES), and consequently, these effects cannot be neglected in the interpretation of the site resolved EEL spectra of Mn_3O_4 .

This work made use of the high-performance computing facilities of Imperial College London and via membership of the United Kingdom HPC Materials Chemistry Consortium funded by EPSRC (EP/F067496)—of HECToR, the national high-performance computing service of the United Kingdom, which is provided by UoE HPCx Ltd. at the University of Edinburgh, Cray, Inc., and NAG Ltd., and funded by the Office of Science and Technology through High End Computing Programme (EPSRC).

A, R. Kucernak,¹ and N. M. Harrison^{1,2,5}

Department of Chemistry

Imperial College London

South Kensington, London SW7 2AZ, United Kingdom

E. A. Ahmad,^{1,2,*} G. Mallia,^{1,2} D. Kramer,³ V. Tileli,⁴

- ²Thomas Young Centre Imperial College London
- South Kensington, London SW7 2AZ, United Kingdom
- ³Faculty of Engineering and the Environment
- University of Southampton University Road, Southampton SO17 1BJ, United Kingdom ⁴Department of Materials
- Imperial College London
- South Kensington, London SW7 2AZ, United Kingdom
- ⁵Daresbury Laboratory

1

Daresbury, Warrington, WA4 4AD, United Kingdom

Received 24 November 2011; published 19 June 2012 DOI: 10.1103/PhysRevLett.108.259701 PACS numbers: 79.20.Uv, 68.37.Ma, 75.25.Dk

*ehsan.ahmad08@imperial.ac.uk

[1] H. Tan, S. Turner, E. Yücelen, J. Verbeeck, and G. Van Tendeloo, Phys. Rev. Lett. 107, 107602 (2011).

- [2] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [3] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, Doll, N.M. Harrison, I.J. Bush et al., K. CRYSTAL09 User's Manual (Università di Torino, Torino, 2010).
- [4] J. Muscat, A. Wander, and N. Harrison, Chem. Phys. Lett. 342, 397 (2001).
- [5] E.A. Ahmad, L. Liborio, D. Kramer, G. Mallia, A.R. Kucernak, and N. M. Harrison, Phys. Rev. B 84, 085137 (2011).
- [6] K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, and K. Ishizuka, Nature (London) 450, 702 (2007).
- [7] M. Haruta, H. Kurata, H. Komatsu, Y. Shimakawa, and S. Isoda, Phys. Rev. B 80, 165123 (2009).
- [8] L.A.J. Garvie and A.J. Craven, Phys. Chem. Miner. 21, 191 (1994).