The H4 (2+) dication and its bonding.

February 15th, 2017
No Gravatar

This post arose from a comment attached to the post on Na2He and relating to peculiar and rare topological features of the electron density in molecules called non-nuclear attractors. This set me thinking about other molecules that might exhibit this and one of these is shown below.

Read the rest of this entry »

VSEPR Theory: A closer look at bromine trifluoride, BrF3.

February 14th, 2017
No Gravatar

I analysed the bonding in chlorine trifluoride a few years back in terms of VSEPR theory. I noticed that several searches on this topic which led people to this post also included a query about the differences between it and the bromine analogue. For those who posed this question, here is an equivalent analysis.

Read the rest of this entry »

Na2He: a stable compound of helium and sodium at high pressure.

February 11th, 2017
No Gravatar

On February 6th I was alerted to this intriguing article[1] by a phone call, made 55 minutes before the article embargo was due to be released. Gizmodo wanted to know if I could provide an (almost) instant quote. After a few days, this report of a stable compound of helium and sodium still seems impressive to me and I now impart a few more thoughts here.

Read the rest of this entry »

References

  1. X. Dong, A.R. Oganov, A.F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G. Qian, Q. Zhu, C. Gatti, V.L. Deringer, R. Dronskowski, X. Zhou, V.B. Prakapenka, Z. Konôpková, I.A. Popov, A.I. Boldyrev, and H. Wang, "A stable compound of helium and sodium at high pressure", Nature Chemistry, 2017. http://dx.doi.org/10.1038/nchem.2716

The Chemistry Department at Imperial College London. A history, 1845-2000.

February 10th, 2017
No Gravatar

The book of the title has recently appeared giving a rich and detailed view over 417 pages, four appendices and 24 pages of photographs of how a university chemistry department in the UK came into being in 1845 and its subsequent history of discoveries, Nobel prizes and much more. If you have ever wondered what goes on in an academic department, populated by and large by very bright and clever personalities and occasionally some highly eccentric ones, then go dip into this book.

Read the rest of this entry »

Open science and the chemistry lab of the future.

February 9th, 2017
No Gravatar

The title refers to an upcoming symposium on the topic on 22-24 May, 2017.  I quote here some of the issues tabled for discussion:

Read the rest of this entry »

Revisiting (and maintaining) a twenty year old web page. Mauveine: The First Industrial Organic Fine-Chemical.

February 2nd, 2017
No Gravatar

Almost exactly 20 years ago, I started what can be regarded as the precursor to this blog. As part of a celebration of this anniversary, I revisited the page to see whether any of it had withstood the test of time. Here I recount what I discovered.

Read the rest of this entry »

Forming a stabilized m-benzyne.

January 20th, 2017
No Gravatar

The story so far. Inspired by the report of the most polar neutral compound yet made, I suggested some candidates based on the azulene ring system that if made might be even more polar. This then led to considering a smaller π-analogue of azulene, m-benzyne. Here I ponder how a derivative of this molecule might be made, using computational profiling as one reality check.

Read the rest of this entry »

Braiding a molecular knot with eight crossings.

January 20th, 2017
No Gravatar

This is one of those posts of a molecule whose very structure is interesting enough to merit a picture and a 3D model. The study[1] reports a molecular knot with the remarkable number of eight crossings.

Read the rest of this entry »

References

  1. J.J. Danon, A. Krüger, D.A. Leigh, J. Lemonnier, A.J. Stephens, I.J. Vitorica-Yrezabal, and S.L. Woltering, "Braiding a molecular knot with eight crossings", Science, vol. 355, pp. 159-162, 2017. http://dx.doi.org/10.1126/science.aal1619

Ritonavir: a look at a famous example of conformational polymorphism.

January 2nd, 2017
No Gravatar

Here is an inside peek at another one of Derek Lowe’s 250 milestones in chemistry, the polymorphism of Ritonavir.[1] The story in a nutshell concerns one of a pharma company’s worst nightmares; a drug which has been successfully brought to market unexpectedly “changes” after a few years on market to a less effective form (or to use the drug term, formulation). This can happen via a phenomenon known as polymorphism, where the crystalline structure of a molecule can have more than one form. In this case, form I was formulated into soluble tablets for oral intake. During later manufacturing, a new less-soluble form appeared and “within weeks this new polymorph began to appear throughout both the bulk drug and formulation areas[1]

Read the rest of this entry »

References

  1. J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter, and J. Morris, "", Pharmaceutical Research, vol. 18, pp. 859-866, 2001. http://dx.doi.org/10.1023/A:1011052932607

The “hydrogen bond”; its early history.

December 31st, 2016
No Gravatar

My holiday reading has been Derek Lowe’s excellent Chemistry Book setting out 250 milestones in chemistry, organised by year. An entry for 1920 entitled hydrogen bonding seemed worth exploring in more detail here.

Read the rest of this entry »