Supramolecular Chemistry of Nanomaterials

Joachim Steinke
Ramon Vilar
Lecture 5 – Molecular Switches

Department of Chemistry
Imperial College of Science, Technology and Medicine
r.vilar@ic.ac.uk
j.steinke@ic.ac.uk
Synthesis of rotaxanes/catenanes

Pictorial representation of the self-assembly of pseudorotaxanes based on

- (a) CT and C-H⋯O hydrogen-bonding interactions and
- (b) N⁺-H⋯O hydrogen-bonding interactions. A possible route toward the synthesis of rotaxanes and catenanes is also indicated.

“Crossovers” - Interlocking

- (a) A simple cross-over gives (i) a catenane upon two ring closures or (ii) a rotaxane upon one ring closure and blocking
- (b) a fused turn can be used for macrobicycle syntheses
- (c) use of two anchors and ditopic turns to form a trefoil knot
- (d) a composite knot from two two-anchor templates
- (e) an oligocatenane resulting from multiple cross-overs on the same anchor.
Hydrogen Bonding in Catenane Formation

- Leigh's simple and flexible synthesis of amide [2]-catenanes.
Magic Rings

Thermodynamically controlled self-assembly / disassembly of benzylic amide macrocycles and [2]catenanes under RORCM (>95% yield).

J. Am. Chem. Soc., 121 (7), 1599 -1600, 1999
Circumrotation

Solvent effects and structural modifications can induce large variations in the rate of circumrotation of benzylic amide catenanes (which can range from the submicro-second time scale (e.g., thiophene catenane 3 at elevated temperatures in polar solvents) to many hours to achieve a single circum-rotation (e.g., pyridine catenane 2 at low temperatures in nonpolar solvents)) allowing tremendous control over the kinetics of a mechanically interlocked molecular system.
Template Directed Catenane Synthesis

- Template-directed synthesis of the [2]catenane \(1 \cdot 4\text{PF}_6\). The key step is the spontaneous threading through BPP34C10 of the tricationic intermediate, formed when \(2 \cdot 2\text{PF}_6\) reacts with \(p\)-xylylene dibromide. This supramolecular assistance is followed by covalent modification and counterion exchange to give \(1 \cdot 4\text{PF}_6\).
Catenane Kinetics

Three different degenerate co-conformational processes observed in temperature-dependent 1H NMR spectra of the [2]catenane 1^{4+}:

(a) circumrotation of CBPQT$^{4+}$ through BPP34C10;
(b) circumrotation of BPP34C10 through CBPQT$^{4+}$; and
(c) rocking of BPP34C10 within CBPQT$^{4+}$. The rates of these processes at room temperature are shown.

First Molecular Shuttle

• The first molecular shuttle

Molecular Switches - Rotaxanes

A chemically controllable molecular shuttle: the ring can be switched between the two "stations" of the dumbbell component by base/acid "inputs".

Logic Operations – Rotaxanes and Catenanes

Schematic representations of the mechanical movements relating two states (0 and 1) in
(a) pseudorotaxanes
(b) rotaxanes
(c) Catenanes
the stimulus (S) can be chemical or electro-chemical energy, or it can be light.

Molecular Switch - All Optical Processing

UV light, visible light, and H^+ induce the interconversion between the three states SP, ME, and MEH. Absorption spectra of SP recorded after (a in Lower) and before (b in Lower) irradiation at 254 nm for 5 min.

PNAS 2002, 99, 4941–4944
An optical signal (yellow arrows) travels from a light source to a detector after passing through a quartz cell containing a solution of SP. The intensity of the optical output (O) switches between low and high values as the optical input (I) is turned on and off. This signal transduction behavior is equivalent to a NOT operation.

<table>
<thead>
<tr>
<th>I</th>
<th>O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>100</td>
</tr>
<tr>
<td>On</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\begin{array}{c|c}
0 & 1 \\
1 & 0 \\
\end{array} \]

PNAS 2002, 99, 4941–4944
An optical signal (yellow arrows) travels from a light source to a detector after passing through two quartz cells containing a solution of SP. The intensity of the optical output (O) switches between low and high values as the two optical inputs (I_1 and I_2) are turned on and off. This signal transduction behavior is equivalent to a two-input NOR operation.

<table>
<thead>
<tr>
<th>I_1</th>
<th>I_2</th>
<th>O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>100</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>3</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>4</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_1</th>
<th>I_2</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logic Function - Pseudorotaxane

Schematic representation of the unthreading/rethreading pattern of pseudorotaxane 1, which corresponds to an XOR logic function.

\[1 + B \xrightarrow{\text{unthreading}} 1 \xrightarrow{\text{"locked" thread}} 3 \xrightarrow{\text{"locked" ring}} 2 - B_2 \xrightarrow{+ H^+} 1 + B\]

\[\begin{align*}
B & \equiv (\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2)_3\text{N} \\
H^+ & \equiv \text{CF}_3\text{SO}_3\text{H}
\end{align*} \]

Molecular Switch – AND Logic Gate

Switching processes of catenane $3H^{5+}$. Starting from catenane 3^{4+}, the position of the macrocyclic polyether switches under acid/base and redox inputs (AND logic).

Light Driven Dethreading

Controllable dethreading/rethreading of a pseudorotaxane based on a trans-cis photoisomerization reaction (80% complexed species).

Light-driven dethreading of pseudorotaxanes by excitation of a photosensitizer P as (a) an external reactant, (b) a stopper in the wire-type component, and (c) a component of the macrocyclic ring.

Molecular Level Plug

A molecular-level plug/socket device: "plug in/plug out" is acid/base controlled, and photoinduced energy transfer takes place in the "plug in" state (CH₂Cl₂, room temperature).

Photocontrollable Abacus

Rotaxane \(7^{6+}\): photoinduced abacus-like movement of macrocycle \(R\) between the two stations \(A_1\) and \(A_2\).

Macrocycle \(R\)

Dumbbell component \((P, A_1, A_2, S, T)\):

(i) a photoactive Ru(II) polypyridine complex \((P)\) as a stopper
(ii) a 4,4\(^\prime\)-bipyridinium unit \((A_1)\) and a 3,3\(^\prime\)-dimethyl-4,4\(^\prime\)-bipyridinium unit \((A_2)\) as electron-accepting stations
(iii) a \(p\)-terphenyl-type ring system as a rigid spacer \((S)\)
(iv) a tetraarylmethane group as the second stopper \((T)\).

The stable translational isomer: \(R\) encircles the better electron-acceptor \(A_1\).

The intramolecular mechanism, which implies the conversion of light energy into mechanical energy without generating waste products, is based on the four operations

(a) **Destabilization of the stable translational isomer**: light excitation of \(P\) (step 1) is followed by the transfer of an electron to the \(A_1\) station (step 2), which is encircled by ring \(R\); such a photoinduced electron-transfer process, which competes with the intrinsic excited-state decay (step 3), "deactivates" the \(A_1\) station.

(b) **Ring displacement**: the ring movement from \(A_1^-\) to \(A_2\) (step 4) has to compete with the back-electron-transfer process from \(A_1^-\) (still encircled by \(R\)) to the oxidized photoactive unit \(P^+\) (step 5).

(c) **Electronic reset**: the back-electron-transfer process from the "free" reduced station \(A_1^-\) to \(P^+\) (step 6) restores the electron-acceptor power to the \(A_1\) station.

(d) **Nuclear reset**: as a consequence of the electronic reset, back movement of the ring from \(A_2\) to \(A_1\) occurs (step 7).

Directionality

A three-station rotaxane in which the direction of ring displacement is determined by the selected input.

The A_1 and A_2 stations can be a 4,4'-bipyridinium and a 3,3'-dimethyl-4,4'-bipyridinium unit, respectively. Depending on the sequence in which the three stations are assembled, a suitable macrocyclicpolyether component can be moved along the thread according to predetermined patterns.
A rotaxane carrier powered by electrochemical inputs designed to perform (a) transport of an amine, (b) formation of an exciplex, and (c) stretching of a molecular spring.
Rotaxane as Molecular Gears

A rotacatenane designed to couple linear and rotary motions under acid/base stimuli.

Device Architectures

Two possible device architectures that tile in two dimensions and so may potentially be fabricated through chemical techniques.

(a) Three-terminal devices (transistors) arranged in a hexagonal lattice

(b) two-terminal devices arranged in a square lattice or crossbar structure.

G, S, and D represent the gate, source, and drain terminals of a field effect transistor; M stands for a molecule.

Molecular Switches - Catenanes

Electrochemically controlled movements upon one-electron oxidation/reduction of a TTF unit in a catenane containing a nonsymmetric ring.

Mechanomechanical Mechanism

$[A^+] \rightarrow [B^+] \rightarrow [B^0] \rightarrow [AB^\#] \rightarrow [A^0] \rightarrow [A^+]$

$+2 \text{ V}$

Net Oxidizing

0

Net Reducing

-2 V

Electroswitchable Catenane

(a) Structural formula of the [2]catenane 3^{4+}.

(b) Ball-and-stick representation of the catenane's solid-state structure showing the TTF unit of the crown ether residing inside the CBPQT$^{4+}$ component.

(c) Space-filling representation of its solid-state superstructure.

UV-vis spectroscopic evidence for the redox switching of the [2]catenane 3^{4+}. (a) Spectrum of the catenane prior to addition of (b) 1 equiv of Fe(ClO$_4$)$_3$ followed by (c) a second equivalent of Fe(ClO$_4$)$_3$. Oxidation is reversed on addition of 2 equiv of ascorbic acid.
Redox Switch Device Construction

Construction of a molecular-based device.

(a) A smooth silicon substrate.

(b) A series of parallel polysilicon wires etched onto the substrate photolithographically.

(c) Following deposition of the catenane monolayer onto the wafer by a LB procedure.

(d) The result when titanium vapor is condensed through a shadow mask, depositing a second layer of wires aligned perpendicularly with respect to the first.
Redox Switch SAM

Schematic representation of the monolayer of $1^{4+} \cdot 4\text{DMPA}$ at the air-water interface. Note the intermolecular $\pi-\pi$ stacking interactions between the catenane tetracations.

Redox Switch LB Behaviour

(a) \(\pi-A\) isotherms of monolayers of the [3]catenane \(3^{4+}\) and its oxidized derivative \(3^{6+}\) anchored with 4 and 6 equiv of DMPA\(^-\) anions, respectively.

(b) Schematic representation of the monolayer of \(3\cdot4\)DMPA stabilized by extensive \(\pi-\pi\) interactions.

(c) Schematic depiction of the first stable monolayer formed by \(3\cdot6\)DMPA. The dicationic TTF units show no affinity for the neighboring catenane hexacations, and so the six DMPA\(^-\) anions fill the voids in the monolayer.

Redox Switch SAM - Hysteresis

(a) Hysteresis curve associated with a conventional magnetic memory bit.
(b) Voltage profile used in the acquisition of
(c) the remnant molecular signature of a device incorporating the switchable [2]catenane 3^{4+}.

The device response was monitored at 0.1 V (b). Robust and significant hysteresis (c) was observed in the bistable [2]catenane, but not in the control devices, indicating that the bistable [2]catenane device is, in fact, a solid-state molecular switch. It exhibited a "read" current difference between the open and closed states of approximately a factor of 3, a "close" voltage of about 1.8 V, and an "open" voltage of about -1.0 V. The bistable [2]catenane device was fairly stable. It was intermittently cycled many times over a two-month period before it showed signs of failure.

Mechanochemical Mechanism

Proposed mechanochemical mechanism for the operation of the device fabricated from the bistable [2]catenane 3^{4+}. Co-conformation $[A^0]$ is the "switch open" state and co-conformation $[B^0]$ the "switch closed" state of the device. When 3^{4+} is oxidized, the TTF unit is ionized in state $[A^+]$ and experiences a Coulomb repulsion inside the CBPQT$^{4+}$ component, resulting in circumrotation of the crown ether and formation of co-conformation $[B^+]$. When the voltage is reduced to near-zero bias, the TTF$^+$ unit is reduced to give co-conformation $[B^0]$, which does not return to co-conformation $[A^0]$ by further circumrotation of the crown ether ring via state $[AB^\#]$ until the cyclophane component is reduced.