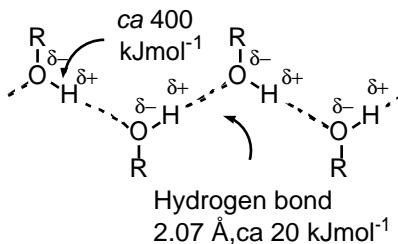
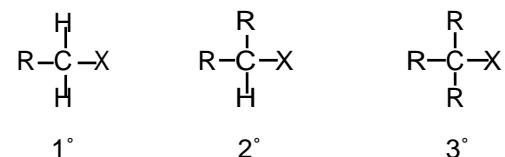
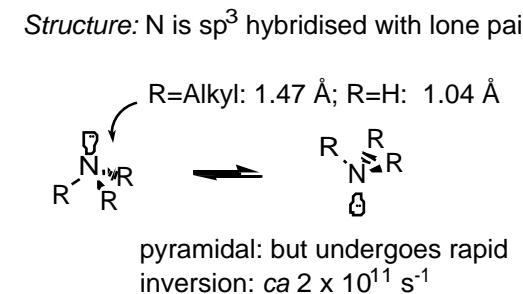


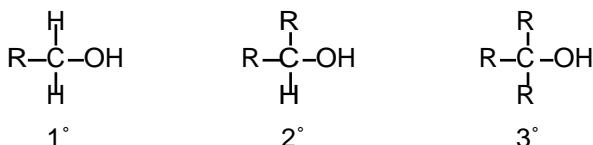
A. General. Structure, Nomenclature and Physical properties

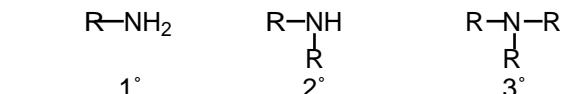

Haloalkanes

Structure:	
alkyl	$\text{R}-\text{X}$
Bond length (Å)	Dipole Moment (D)
Cl	1.76
Br	1.93
I	2.13


Alcohols


Alcohols participate in *Hydrogen-bonding*

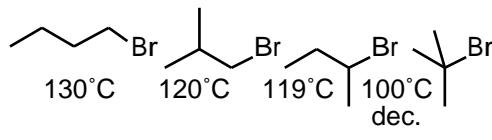

Nomenclature: Depending on the substitution of the carbon bearing the halogen atom we classify alkyl halides as primary (1°), secondary (2°) or tertiary (3°).


Amines

Nomenclature: As for the alkyl halides we classify alkyl alcohols as 1° , 2° or 3° .

Nomenclature:

Beware confusion here: e.g., "tert-butylamine", Me_3CNH_2 is a 1° amine.


Haloalkanes have higher boiling points (bp's) than the corresponding alkanes:

$\text{e.g. } \text{CH}_4$	CH_3Cl	CH_3Br	CH_3I
-162°C	-24°C	5°C	43°C

Boiling points increase *ca* 20-30°C in the homologous series

$\text{e.g. } \text{MeI}$	EtI	PrI	BuI
43°C	72°C	102°C	130°C

Branching lowers bp's:

Haloalkanes are insoluble in water;

Haloalkanes are soluble in common organic solvents;

I, Br and poly-Cl alkanes are more dense than water.

Physical Properties:

Hydrogen bonding is weak, but their cumulative effect is considerable and responsible for: the anomalously high bp's of alcohols

e.g. 	MeL	EtL	PrL	BuL
$\text{L} = \text{H}$	-162°C	-88°C	-42°C	0°C
$\text{L} = \text{OH}$	64°C	78°C	97°C	118°C

Hydrogen bonding is also responsible for the solubility of low molecular weight alcohols in water:

Compound: Solubility (g/100g H_2O)

MeOH	∞
EtOH	∞
PrOH	∞
BuOH	7.9
$\text{C}_5\text{H}_{11}\text{OH}$	2.3

Physical properties:

Amines have a characteristic "fishy" odour.

Amines have higher bp's than non-polar compounds of similar molecular weight

H_3CNH_2 (MW 31)	$\text{CH}_3\text{CH}_2\text{NH}_2$ (MW 45)
bp: -7.5°C	bp: 49°C
CH_3CH_3 (MW 30)	$\text{CH}_3\text{CH}_2\text{CH}_3$ (MW 44)
bp: -88°C	bp: -42°C

Neat, 1° and 2° (but not 3°) amines can intermolecularly hydrogen-bond:

$\text{C}_6\text{H}_{13}\text{NH}_2$:	bp 131°C
$(\text{C}_3\text{H}_7)_2\text{NH}$:	bp 110°C
$(\text{C}_2\text{H}_5)_3\text{N}$:	bp 89°C

1°, 2° and 3° amines can all Hydrogen-bond to water. Therefore the low MW amines (<C6) are soluble in water.

B. Reactivity

Haloalkanes

Good electrophiles for nucleophilic Substitution by breaking of C-X bond.

Alcohols

Alcohols are only relative weak nucleophiles, but when deprotonated are good nucleophiles and good bases.

Amines

Lone pair renders amines nucleophilic.