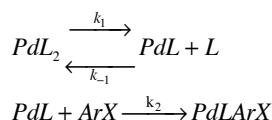
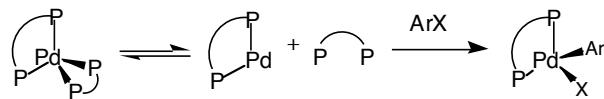


Problem: Steady State Approximation

- Oxidative addition of aryl halides to Pd complexes with chelating phosphine ligands
Hartwig and coworkers, *J. Am. Chem. Soc.*, **2000**, 122, 4618; *Organomet.*, **2002**, 21, 491

- Use the steady-state approximation to solve for the concentration of the intermediate species $[PdL]$.
- Write the rate law for the formation of the oxidative addition product $PdLArX$.
- Construct a plot of rate vs. $[ArX]$.
- What is the order in $[ArX]$ in the limiting case of high $[ArX]$? Of low $[ArX]$?

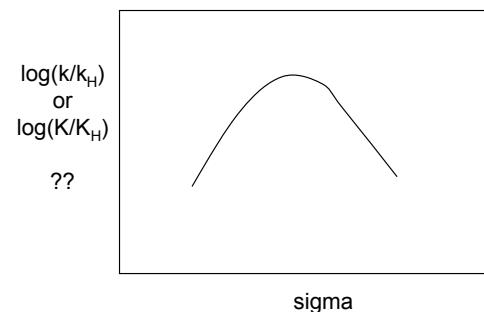
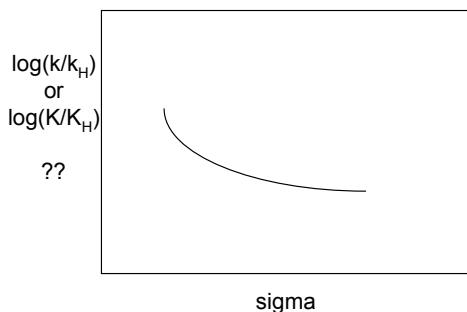


1

2

Problem: Hammett Plots

- Oxidative addition of aryl halides to Pd complexes with chelating phosphine ligands
Hartwig and coworkers, *J. Am. Chem. Soc.*; **2000**, *122*, 4618; *Organomet.*; **2002**, *21*, 491

Discuss what a Hammett plot would look like for this reaction if we construct it for rates of reactions of series of ArX:



- For reactions carried out at low ArX
- For reactions carried out at high ArX

3

Problem: Hammett Plots

- Deviations from linearity in Hammett plots:
 - Describe what concave upwards deviation implies
 - Describe what concave downwards deviation implies
- We have considered Hammett plots showing linear free energy relationships for series of reaction rate constants and equilibrium constants plotted on the y-axis (as $\log(k/k_H)$ and $\log(K/K_H)$). Which would you expect to plot on the y-axis for Hammett plots showing deviations as below? Explain.

5