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In-Situ Methods for Kinetic Analysis

• Ideally, we would like to have a probe that can “ride along” with the

molecules as the reaction proceeds, so that we have a virtually

continuous account of the changing concentrations of species.

• What sort of probe can we use?

Any method that gives an accurate measurement of some property of the

system that is proportional to concentration or proportional to rate.

– Differential (or derivative) methods measure a property that is

proportional to the instantaneous reaction rate.

– Integral methods measure a property that is proportional to

concentration.
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• Any method which measures differences in a property  as a function of time

will provide a more dramatic picture to the eye than one which measures

accumulation (e.g. integral techniques).

• Features of the reaction profile are are more difficult to pick out by eye from a

measure of % conversion vs. time compared to rate vs. time.

– The induction period of rising rate lasts until ca. 10% conversion, but this appears

only as a slight bend in the conversion plot.

– The shoulder in rate at high conversion is also hard to spot in the conversion curve.

Experimental Kinetic Measurements
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Integral Methods for Collecting Rate Data

• Sample collection and analysis:

– sampling is conventionally used to obtain

initial rate data

– one rate datum point for every two samples taken!
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• In-situ methods: Gas uptake measurements: P = f(t)

– ideal gas law gives relationship between pressure

and concentration

– applicable to reactions where one of the reactants

(or products)  is gaseous (hydrogenations,

oxidations, some polymerizations)

• In-situ methods:  spectroscopic

– (FTIR, UV,Raman, etc)

– usually measure concentrations by relying on

Beer’s Law.

– to obtain reaction rate, we must take the derivative

of concentration, dc/dt
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Differential Methods

• In-situ methods:  reaction calorimetry

– measures reaction enthalpy, q, as a

function of time

– The heat consumed or evolved in a

reaction is directly propotional to the

reaction rate

– Each datum point is a (rate, time) pair

– Each datum point can be thought of as

an “initial rate” measurement at a

different substrate concentration.

– Conversion may be obtained by

integrating the heat flow curve.
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FTIR can give a concentration profile of reactants, intermediates, and products

over the course of the reaction

Sun, et al., Thermochim. Acta, 1996, 289, 189.

Example : In-situ FTIR Spectroscopy
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Example : Hydrogen Uptake Measurements
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Example : Reaction Calorimetry

• Differential  methods of measurement highlight rapid

changes
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from the integral of the heat flow
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heat flow calorimetry gives kinetic

AND thermodynamic information

about the reaction

    

  

q = !Hrxn "V "
dCi

dt

% conversion = 100 "

q t( )dt
0

t

#

q t( )dt
0

t f

#

Autumn 2004

8

Developing a “Graphical Rate Equation”

• We can turn our integral measurement into a differential curve (and vice

versa) by differentiating it (or integrating it).

• The raw data are called the “primary data” and the derivative (or integral)

curve is called the “processed” data.
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Developing a “Graphical Rate Equation”

• We make kinetic measurements as a function of time, but a reaction rate

law gives rate as a function of concentration (or fraction conversion).

• If we combine our primary and processed data, we can develop a plot of

rate vs. conversion (or concentration) -- a “graphical rate equation”.
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Reaction Progress Kinetic Analysis
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• In this example, the plot of rate vs.

concentration is linear, showing that

the reaction obeys first order kinetics.

• In this example, the plot of rate vs.

concentration shows curvature,

suggesting that the rate law is more

complex than a simple integer order.

• Reaction progress kinetic analysis compared to classical kinetic methods:

– we construct the entire rate vs. concentration curve from a single

experiment rather than a series of initial rate experiments.

– We make use of a visual approach (compare to integrating rate equations!)

to assess the reaction’s “driving forces”.


