Non-relativistic time-dependent Schroedinger equation

$$H|\Phi> = i\hbar \frac{\partial |\Phi>}{\partial t}$$

Evolution of a system with time

Non-relativistic time-independent Schroedinger equation

Hamiltonian operator for a system of nuclei and electrons

$$H|\Phi>=E|\Phi>$$

Hamiltonian operator for a system of nuclei and electrons

the operator for of the electrons

the **kinetic** energy

the operator for the repulsion energy between electrons

Number of electrons

Number of nuclei the operator for the **kinetic** energy of the nuclei

the operator for the **repulsion** energy between nuclei

$$+\sum_{i=1}^{N}\sum_{j>i}^{N}\frac{e^{2}}{4\pi\epsilon_{0}r_{ij}}-\sum_{i=1}^{N}\sum_{A=1}^{M}\frac{Z_{A}e}{4\pi\epsilon_{0}r_{iA}}+\sum_{A=1}^{M}\sum_{B>A}^{M}\frac{Z_{A}Z_{B}e^{2}}{4\pi\epsilon_{0}r_{AB}}$$

Distance between the ith and jth electron

the operator for the attraction energy between electrons and nuclei

Distance between the *i*th electron and Ath nucleus

Distance between the Ath and Bth nucleus

Hamiltonian operator for a system of nuclei and electrons in Atomic Units

the operator for the **kinetic** energy of the electrons

Number of electrons

Number of nuclei the operator for the **kinetic** energy of the nuclei

the operator for the **repulsion** energy between electrons

$$H = -\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 - \sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2$$

the operator for the **repulsion** energy between nuclei

Distance between the ith and jth electron

 $+ \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{r_{AB}}$ Distance between the *i*th electron and Ath nucleus

the operator for the attraction energy between electrons and nuclei

Distance between the Ath and Bth nucleus

Schroedinger equation solution

Hydrogen atom and hydrogenic atoms

 $(H, He^+, Li^{2+}, ..., U^{91+})$

--> EXACT SOLUTION

wave-function --> coordinates of a single electron

He, Hydrogen molecule, H₂⁺

--> APPROXIMATED SOLUTION

wave-function --> coordinates of all electrons many-body system

Born-Oppenheimer Approximation

Nuclei, being so much heavier than electrons, move relatively slowly and may be treated as stationary while the electrons move in their field.

$$H_{elec} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}}$$

$$H_{elec} \Phi_{elec} = E_{elec} \Phi_{elec}$$

$$\Phi_{elec} = \Phi_{elec}(\{\mathbf{r}_i\}; \{\mathbf{r}_A\})$$

explicit dependence on the electron coordinates

$$E_{tot} = E_{elec} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{r_{AB}}$$

parametric dependence on the nuclear coordinates

Variational principle

According to the variation principle for the ground state $|\Phi_0\rangle$, the energy of an approximate wave function $|\tilde{\Phi}\rangle$ is always higher.

$$H|\Phi_0>=E_0|\Phi_0>$$

$$E_0 = \frac{\int \Phi_0^* H \Phi_0 d\tau}{\int \Phi_0^* \Phi_0 d\tau}$$

$$E_{\tilde{\Phi}} = \frac{\int \tilde{\Phi}^* H \tilde{\Phi} d\tau}{\int \tilde{\Phi}^* \tilde{\Phi} d\tau}$$

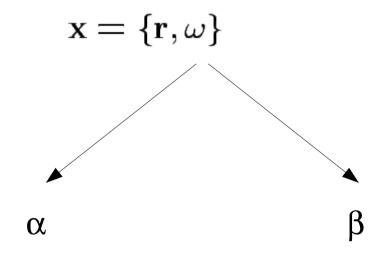
$$E_{\tilde{\Phi}} \geq E_0$$

Thus one measure of the quality of a wave function is its energy:

The lower the energy, the better the wave function.

Spin

To complete describe an electron is necessary to specify its *spin*.



Pauli principle

No more than two electrons may occupy any given orbital and, if two do occupy one orbital, then their spin must be paired.

General statement:

When the label of any two identical fermions (electrons) are exchanged, the total wavefunction changes sign.

$$\Phi(x_1,...,x_i,...,x_j,...,x_N) = -\Phi(x_1,...,x_j,...,x_i,...,x_N)$$

Hartree-Fock method I

$$\Psi = \psi_{i,\alpha}(\mathbf{r}_1)\psi_{i,\beta}(\mathbf{r}_2)\psi_{j,\alpha}(\mathbf{r}_3)\psi_{j,\beta}(\mathbf{r}_4)...\psi_{k,\alpha}(\mathbf{r}_{N-1})\psi_{k,\beta}(\mathbf{r}_N)$$

Molecular orbital

$$\Psi = \frac{1}{\sqrt{N!}} \begin{bmatrix} \psi_{i,\alpha}(\mathbf{r}_1)\psi_{i,\beta}(\mathbf{r}_1)...\psi_{k,\beta}(\mathbf{r}_1) \\ \psi_{i,\alpha}(\mathbf{r}_2)\psi_{i,\beta}(\mathbf{r}_2)...\psi_{k,\beta}(\mathbf{r}_2) \\ ... & ... \\ \psi_{i,\alpha}(\mathbf{r}_N)\psi_{i,\beta}(\mathbf{r}_N)...\psi_{k,\beta}(\mathbf{r}_N) \end{bmatrix}$$

Hartree-Fock method II

$$f(i)\psi_{i,\alpha}(\mathbf{r}_1) = \epsilon\psi_{i,\alpha}(\mathbf{r}_1)$$

$$f(i) = -\frac{1}{2}\nabla_i^2 - \sum_{A=1}^M \frac{Z_A}{r_{iA}} + v^{HF}(i)$$

the average potential experienced by the *i*th electron due to the presence of the other electrons

The essence of HF approximation is to replace the complicated many-electron problem by a one-electron-problem.